
Minimizing Flow Completion Times in Data Centers
Ali Munir, Ihsan A. Qazi, Zartash A. Uzmi, Aisha Mushtaq, Saad N. Ismail, M. Safdar Iqbal, Basma Khan

Computer Science Department, LUMS
Email: {ali.munir,ihsan.qazi,zartash,14100142,14100055,12100005,basma.khan}@lums.edu.pk

Abstract— For provisioning large-scale online applications such
as web search, social networks and advertisement systems, data
centers face extreme challenges in providing low latency for short
flows (that result from end-user actions) and high throughput for
background flows (that are needed to maintain data consistency
and structure across massively distributed systems). We propose
L2DCT, a practical data center transport protocol that targets
a reduction in flow completion times for short flows by approx-
imating the Least Attained Service (LAS) scheduling discipline,
without requiring any changes in application software or router
hardware, and without adversely affecting the long flows. L2DCT
can co-exist with TCP and works by adapting flow rates to the
extent of network congestion inferred via Explicit Congestion
Notification (ECN) marking, a feature widely supported by the
installed router base. Though L2DCT is deadline unaware, our
results indicate that, for typical data center traffic patterns and
deadlines and over a wide range of traffic load, its deadline
miss rate is consistently smaller compared to existing deadline-
driven data center transport protocols. L2DCT reduces the mean
flow completion time by up to 50% over DCTCP and by up to
95% over TCP. In addition, it reduces the completion for 99th
percentile flows by 37% over DCTCP. We present the design
and analysis of L2DCT, evaluate its performance, and discuss an
implementation built upon standard Linux protocol stack.

I. INTRODUCTION

Data centers are now being used as a critical infrastructure
for high-revenue online services such as web search, social
networking, advertisement systems, and recommendation sys-
tems. Such data center applications pose demanding latency
requirements and even a small fraction of a second can make
a quantifiable difference in user experience thus impacting the
revenue. For example, Google observed a 20% traffic reduction
from an extra 500 ms of latency (introduced inadvertently), and
Amazon found that every additional 100 ms of latency costs
them a 1% loss in business revenue [1], [2].

Large-scale online applications are typically hosted at data
centers and follow the Partition/Aggregate workflow pattern, in
which user requests are partitioned amongst layers of worker
nodes within the data center and the results from the workers
are then combined by an aggregator node before a final
response is sent back to the user [3], [4].

Provisioning these applications leads to data center traffic
that is a mix of short and long flows. Prior work shows that
most flows are short arising from end-user actions, however
most bytes are contained in a very small number of background
long flows that are needed to maintain data consistency and
structure across massively distributed systems [3]. The time-
liness of response to the end-user is determined by the short
foreground flows while the quality of response is determined
by both the short and the long flows. Long-lived TCP flows
cause the length of the bottleneck queue to grow until packets
get dropped. When long flows and latency-sensitive short flows

share the same queue, short flows experience increased latency
due to queue buildup by long flows [1], [5], [6].

In this paper, we present L2DCT (Low Latency Data Center
Transport), a practical data center transport protocol that
targets a reduction in the completion times for short flows.
L2DCT can be deployed incrementally as it can co-exist with
TCP and does not require any changes to router hardware or
application software. At the heart of L2DCT is the additive
increase and backoff mechanism for setting the transport layer
window size. Under this mechanism, end hosts make use of
the information inferred from Explicit Congestion Notification
(ECN) marking and adjust their flow rates (by setting the
window size) based on the amount of data a flow has already
sent. Intuitively, conservative backoff and aggressive increase
for short flows allows these flows to finish relatively quickly.

A number of transport protocols have previously been
proposed for large-scale data center applications with Parti-
tion/Aggregate workflow.

One class of data center protocols approximate the processor
sharing (PS) discipline by dividing the link bandwidth equally
among flows [1], [7], [8]. This solution ignores the disparate
requirements for short foreground and long background flows.
Furthermore, it has previously been shown that although the
PS discipline leads to fairness, it is far from optimal in terms
of minimizing the average flow completion time (AFCT) [9].

Another class of data center protocols assign deadlines to
flows and try to meet those deadlines as the main objective [4],
[6]. Such protocols require changes to applications (for passing
deadline and/or flow size information) and may need router
hardware modifications [4]. Furthermore, there is no estab-
lished basis for accurately choosing the deadlines, which are
currently set based on user experience surveys [1], [4].

L2DCT focuses on reducing the completion times for short
flows. PDQ [10] shares a similar objective and improves
the flow completion times over TCP, RCP [8] and D3 [4].
However, it requires modifications to switch hardware and
software and is incompatible with TCP, leading to practical
difficulties with deployment. Indeed, a protocol can optimally
minimize the AFCT by using the Shortest Remaining Pro-
cessing Time (SRPT) scheduling discipline. However, SRPT
requires knowledge of flow sizes (which may or may not be
available), a centralized scheduler, and incurs an overhead
for passing flow size information to the scheduler. L2DCT
overcomes all these limitations: it does not need a centralized
scheduler, is compatible with TCP, does not require any
software or hardware support from the routers (except for
the ECN marking which is a standard feature in present-day
routers [1], [6]), and is easy to implement (requires fewer than
75 lines of code change to TCP in the Linux kernel).

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2157

Fig. 1. Motivating example.

Practicality of L2DCT also stems from the fact that it
approximates the Least Attained Service (LAS) scheduling dis-
cipline, which does not require flow size information. LAS also
targets a reduction in AFCT and closely approximates SRPT
[11] even though it is not optimal, as illustrated in Figure 1.
Three flows (A, B, and C), having different transfer sizes,
arrive at different times. Assuming a fluid traffic model i.e.,
with infinitesimally small units of transmission, the progress
of flows with fair sharing, SRPT, and LAS is as shown. With
fair sharing or Processor Sharing (PS), the flows A, B, and
C finish at times 3.5, 6.5, and 7, respectively and have an
AFCT of 2.5+4.5+7

3 = 4.67. With SRPT, the AFCT becomes
1+2+7

3 = 3.33 and with LAS, the AFCT is 1+3+7
3 = 3.67.

The congestion control mechanism of L2DCT approximates
LAS as follows: in the face of congestion, long flows back
off aggressively while short flows do so conservatively. In
contrast, the additive increase of congestion window is more
aggressive in case of short flows. This intuitively favors the
short flows to finish quickly without causing any starvation
of long flows. Furthermore, window size adjustment based on
the extent of congestion, as estimated by ECN marking, allows
long flows to achieve high throughput in the absence of short
flows and prevents congestion collapse.

L2DCT reduces the AFCT by up to 50% over DCTCP and
by up to 95% over TCP. It also reduces the completion time
for the 99th percentile flows by 37% over DCTCP. Though
L2DCT focuses on AFCT and is deadline unaware, our results
also show that it would miss fewer deadlines compared to
existing deadline-driven data center transport protocols, for
typical data center traffic patterns and deadlines and over a
wide range of traffic load. Altogether, this paper makes the
following contributions:
• A data center transport protocol L2DCT that targets

a reduction in flow completion times, is incrementally
deployable, requires no changes to the data center appli-
cation code base or the router hardware, and is able to
co-exist with TCP.

• Design and analysis of the congestion control mechanism
used in L2DCT.

• Extensive evaluation of L2DCT (using at-scale simula-
tions) in comparison with TCP and other proposed data

center transport protocols under typical data center traffic
patterns for large-scale online applications over a wide
range of workloads, measuring the impact in: average
flow completion times, proportion of deadlines missed,
per flow throughput in a multihop setting, and bottleneck
queue length.

• A small-scale testbed evaluation using an implementation
built upon the standard Linux protocol stack.

The rest of the paper is organized as follows. We describe
the details of L2DCT and present its analysis in Section II.
We evaluate L2DCT’s performance in Section III. Linux im-
plementation and real testbed results are presented in Section
IV. We discuss related work in Section V, followed by some
discussion and future work in Section VI. We offer concluding
remarks in Section VII.

II. L2DCT PROTOCOL

L2DCT modulates the congestion window size based on
estimated flow sizes as well as the extent of congestion in
the network. Flow sizes are estimated based on the amount of
data a flow has sent so far. This enables L2DCT to adapt
congestion window sizes in a size-aware manner without
requiring flow size information and approximate scheduling
disciplines such as LAS. With such size-aware congestion
management, L2DCT is able to significantly reduce the AFCT.

A. Congestion Avoidance Algorithm

The congestion avoidance algorithm used by L2DCT has
two components, one at the sender side and the other at the
routers. Like DCTCP [1], a router marks all packets by setting
the Congestion Experienced (CE) bits using ECN [12] when
the queue length exceeds a certain threshold. L2DCT senders
measure the extent of network congestion by maintaining a
weighted average of the fraction of marked packets, α, as:

α = g × F + (1− g)× α

where F is the fraction of packets marked in the most recent
window, and g is the weight given to new samples.

In order to realize different scheduling disciplines, such as
SRPT and LAS, which prioritize flows based on their sizes,
L2DCT modulates the congestion window size of each flow
based on α and a weight. In the context of LAS, these weights
are assigned based on the amount of flow data sent so far but
can differ across scheduling disciplines (which we discuss in
Section III-E). These weights implicitly define priorities of
a flow. Based on these weights and α, we determine k, the
increase in congestion window per round-trip time (RTT) and
the backoff penalty b, as follows:

k = wc/wmax (1)

b = αwc (2)

where wc ∈ [wmin, wmax] is the current flow weight, wmin

is the minimum weight, and wmax is the maximum weight
any flow can assume. We evaluate the impact of these bounds
on wc in Section III. Each flow starts by setting wc to wmax.
As flows send more data, wc decreases before converging to
wmin. Observe that since wc ≤ wmax and α ≤ 1, therefore

2013 Proceedings IEEE INFOCOM

2158

0
0.25

0.5
0.75

1

012345
0

0.25

0.5

0.75

1

α
W

c

ba
ck

of
f p

en
al

ty
 (

b)

Fig. 2. Changes in backoff penalty b as a function of α and wc.

k ≤ 1 and b ≤ 1, respectively. While the increase in window
size per RTT can be more than one but due to burstiness in
packet arrivals in data center applications [5], we limit k to at
most 1, which is the increase factor used by TCP [1].

When a marked ACK (i.e., with ECN-Echo flag set) is
received, L2DCT uses b to reduce the window size as:

cwnd = cwnd× (1− b/2). (3)

Note that TCP, unlike L2DCT, always cuts its window size by
half1. When no packets are CE-marked, the window size is
increased as:

cwnd = cwnd+ k. (4)

Therefore, when congestion is high (α = 1 and b = 1) the
window size is reduced by half, similar to TCP. When α = 0,
and so is b, window increase depends on wc. When α varies
between 0 and 1, the window size is adapted based on k and
b. In particular, flows with high weight (i.e., short flows) incur
a smaller backoff penalty and apply a larger k compared to
flows with smaller weights (i.e., long flows). Note that when
wc = wmax, the window size is increased by one packet,
similar to TCP.

Flow weights: The weight wc decreases with the amount
of data a flow has already sent. Some possible functions for
wc include 1/s and e−s, where s is the data sent so far. We
discuss the choice of the weight function in Section III.

B. Understanding Congestion Behavior

The congestion behavior of L2DCT depends on wc and α
as they impact the window increase and decrease policies.
We now discuss how the choice of L2DCT’s window control
policies allows it to achieve the following goals:

1) When short flows and long flows co-exist, the latter
should relinquish bandwidth to allow the former a
greater short term share of the bandwidth.

2) When only long flows are present, they should be able to
achieve high throughput and not be penalized any more
than regular TCP or DCTCP.

3) When congestion becomes severe (i.e., α is close to
1), all flows should converge to applying full backoff,
similar to TCP, to prevent congestion collapse.

The first goal suggests that short flows should increase their
window faster than long flows and backoff less. Consequently,
we vary k as a function of wc. When a new flow starts, it

1TCP and L2DCT both reduce their window size at most once per RTT.

increases its window by 1 pkt/RTT (similar to TCP). However,
as the flow transmits more packets, its weight decreases,
leading to a proportional decrease in the increase/RTT. This
helps in prioritizing short flows over long flows.

Figure 2 shows the backoff penalty as a function of wc and
α. Observe that when 0 < wc < 1 (i.e., long flows), b increases
rapidly even with small increases in α, and approaches 1
as α tends to 1. This implies that minor congestion causes
rapid reduction in the window sizes of long flows but severe
congestion (e.g. α = 1) does not penalize such flows any more
than regular TCP or DCTCP as suggested by the second goal.

When wc > 1 (i.e., short flows), b increases slowly in
response to increases in α, until α approaches 1, at which
point b rapidly converges to 1. Therefore, minor congestion
does not penalize short flows by much, which allows such
flows a greater short-term share of the bandwidth to finish
quickly. However, severe congestion causes a full backoff.

When congestion continues to grow in severity after long
flows have backed off, then two scenarios are possible: (i)
there are many short flows, who are not reducing their share
of the bandwidth (ii) there may be TCP flows who are con-
suming bandwidth. Both these situations are handled because
as α tends to 1, even short flows will throttle themselves,
thus allowing TCP and other short flows to make progress.
Consequently, the shortest flows will have the largest share of
the bandwidth.

C. Analysis

To understand the impact of wc and k on the steady state
behavior of L2DCT, we now present the analysis of L2DCT
in a simplified setting. We consider N long-lived flows with
identical RTTs T and weight wc, sharing a single bottleneck
link of capacity C. It is further assumed that the N flows are
synchronized i.e., their window dynamics (or sawtooths) are
in-phase. Of course, this assumption is only realistic when N
is small, however, this is the case we care about most in data
centers, where responses from worker nodes are synchronized
[7]. We further assume that wc is fixed. In reality, wc changes
over time, however, this assumption still allows us to capture
the impact of wc on the protocol performance.

Due to flow synchronization, the window sizes of N flows
follow identical sawtooths, and therefore, the queue size
process also follows a sawtooth [13]. We are interested in
determining the backoff penalty b as a function of wc, k, and
the maximum window size (W o) as well as quantities which
completely specify the queue sawtooth: the amplitude of queue
oscillations (A), period of oscillations (TC), and the maximum
queue length (Qmax).

With synchronized flows, the queue length exceeds the
marking threshold K for exactly one RTT in each period
of the sawtooth, before the sources receive ECN marks and
reduce their window sizes accordingly. Therefore, we compute
the fraction of marked packets, α, by dividing the number of
ACKs received during the last RTT by the total number of
ACKs received during the full period of the sawtooth, TC .

We now consider one of the flows and determine its backoff
penalty. Let X(W1,W2) denote the number of packets sent by

2013 Proceedings IEEE INFOCOM

2159

a flow, while its window increases from W1 to W2 > W1. This
takes (W2−W1)/k RTTs2 during which the average window
size is (W1 +W2)/2.

X(W1,W2) = (W 2
2 −W 2

1)/2k

Let W o = (CT + K)/N . This is the window size at which
the queue length reaches K, and switch starts marking the
packets with the CE codepoint. During the round-trip time
it takes for the sender to react to these marks, another W o

packets have been sent. Hence, fraction of marked packets, α,
can be calculated by,

α = X(W o,W o + k)/X((W o + k)(1− b/2),W o + k)

= ((W o+k)2− (W o)2)/((W o+k)2− (W o+k)2(1− b/2)2)
(5)

Simplifying and rearranging the equation gives,

α(b− b2/4) = (2W ok + k2)/(W o + k)2

Assuming b is small, we can rewrite the equation as,

αb = (2W ok + k2)/(W o + k)2

Plugging the value of b = αwc , gives us,

α =
[
(2W ok + k2)/(W o + k)2

]1/(wc+1)
(6)

and b =
[
(2W ok + k2)/(W o + k)2

]wc/(wc+1)
(7)

Note that when wc=1 and k = 1, we obtain α for DCTCP [1].
The amplitude of oscillation in the window size of a single
flow, D, is given by,

D = (W o + k)− (W o + k)(1− b/2) = b(W o + k)/2 (8)

As there are N flows in total, A can be computed as follows,

A = ND = Nb(W o+k)/2 ≈ NW o

2
.

(
2k

W o

)wc/(wc+1)

(9)

where the final expression assumes that W o >> k. The period
of the oscillations and the maximum queue length are,

Tc = D = b(W o + k)/2 (10)

Qmax = N(W o + k)− C × T = K +Nk (11)

We compared the accuracy of the above results with NS2
simulations. Figure 3 shows the results for wc ∈ {0.5, 1}
and N ∈ {1, 2} on a 1 Gbps link with a RTT of 300μs.
Observe that the analysis provides a fairly accurate prediction
of the window dynamics when wc = 1. For wc = 0.5,
the analysis yields larger variations in window size com-
pared to simulations due to the continuous approximation
we made. An important property, revealed by Equation 9, is
that the amplitude of the queue oscillations of L2DCT is in
O((C×T)1/(wc+1)) when N is small. In particular, the queue
oscillations become independent of C × T (i.e., the BDP)
when wc is large and the ratio 1/(wc + 1) approaches zero

2Note that when k < 1, a flow sends W packets/RTT until the window
becomes W +1. However, we found the above continuous approximation to
be fairly accurate compared to the precise expressions, which require solving
α numerically.

 40
 50
 60
 70
 80
 90

 100

 9.65 9.655 9.66 9.665 9.67

C
W

 (p
kt

s)

time (sec)

NS2 (wc=1)
Analysis (wc=1)

(a) N = 1, wc = 1

 20
 30
 40
 50
 60
 70
 80

 9.65 9.655 9.66 9.665 9.67

C
W

 (p
kt

s)

time (sec)

NS2 (wc=1)
Analysis (wc=1)

(b) N = 2, wc = 1

 40
 50
 60
 70
 80
 90

 100

 9.65 9.655 9.66 9.665 9.67

C
W

 (p
kt

s)

time (sec)

NS2 (wc=0.5)
Analysis (wc=0.5)

(c) N = 1, wc = 0.5

 20
 30
 40
 50
 60
 70
 80

 9.65 9.655 9.66 9.665 9.67

C
W

 (p
kt

s)

time (sec)

NS2 (wc=0.5)
Analysis (wc=0.5)

(d) N = 2, wc = 0.5

Fig. 3. Comparison of the window size dynamics predicted by the analysis
with NS2 simulations for different weights wc.

because senders backoff less. When wc = 1 and N is small,
the amplitude is in O(

√
C × T), which is also the case for

DCTCP [1]. Finally, when wc approaches zero, the oscillations
become similar to those of TCP. The lower bound we chose
on wc (i.e., wmin = 0.125) implies that the amplitude of
the queue oscillations for small N in the worst case is in
O((C×T)8/9), which is much smaller than that of TCP. This
implies that we can have a small marking threshold K without
losing throughput in the low statistical multiplexing regime
seen in data center environments. We know that,

Qmin = Qmax −A (12)

To determine the lower bound on K, we minimize (12) over
N to get,

K >
wwc

c (C × T)

2(wc + 1)wc+1 − wwc

c
(13)

In the worst-case scenario, where wc = 0.125, we get K >
(C × T)/2.

III. EVALUATION

We evaluate the performance of L2DCT using at-scale
simulations and a real Linux implementation. First, we eval-
uate L2DCT using a benchmark generated from the traffic
measurement study conducted in [1]. Second, we evaluate
L2DCT’s throughput and queuing behavior in single and multi-
hop environments. Finally, we evaluate L2DCT’s performance
when it co-exists with TCP.

We compare the performance of L2DCT with DCTCP
and TCP SACK with drop-tail queueing. For deadline-aware
scenarios, we compare L2DCT with D2TCP [6], a recently
proposed deadline-aware transport protocol. Unless otherwise
stated, we use a single-rooted tree; a commonly used data
center topology for our evaluation [1], [4], [7], [14]. In our
simulations, we use 1 Gbps interfaces, round-trip propagation
delay of 300μs, and a static buffer size of 250 packets unless
stated otherwise. We set the RTOmin of all protocols to be
10 ms as suggested by previous studies [1], [14]. We set the
parameters of DCTCP and L2DCT to match those in [1]. In

2013 Proceedings IEEE INFOCOM

2160

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

Im
pr

ov
em

en
t i

n
A

F
C

T
 (

%
)

Offered Load (%)

TCP
DCTCP

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 10 30 50 80

F
C

T
 (

m
se

c)

Offered Load (%)

L2DCT - Uniform
DCTCP - Uniform

(b)

 0

 5

 10

 15

 20

 25

 30

 35

10 30 50 80

F
C

T
 (

m
se

c)

Offered Load (%)

L2DCT - Pareto
DCTCP - Pareto

(c)

Fig. 4. Benchmark results at varying traffic loads. (a) Improvement in AFCT of L2DCT over DCTCP and TCP. 1st, 5th, 50th, 95th, and 99th percentile
completion times of L2DCT and DCTCP with two long-lived flows along with (b) uniformly distributed flow sizes and (c) Pareto distributed flow sizes.

particular, the weighted averaging factor g is set to 1/16 and the
marking threshold K to 20. For L2DCT, we cap wc between
2.5 and 0.125, except in cases where we explore the effect
of varying the cap on wc. In our evaluation, we assume that
wc, which is initially 2.5, stays constant when the amount of
data sent so far is < 200 KB, and then decreases linearly to
0.125 for 1 MB, and stays constant afterwards. This matches
the traffic profiles observed in real data centers, where delay-
sensitive traffic is generally less than 200 KB and long-lived
flows are of > 1 MB size [1], [5].

A. Data Center Specific Impairments

1) Benchmark Settings: We generate short query traffic
with flow sizes drawn from the interval [2 KB, 98 KB] using a
uniform distribution, as done in a prior study [4]. In addition,
we generate two long-lived flows, which represents the 75th

percentile traffic multiplexing in data center networks [1].
Figure 4 shows the flows completion time results as a

function of the offered traffic load. Observe that L2DCT
improves the AFCT over DCTCP and TCP by up to 45%
and 95%, respectively (see Figure 4(a)). The improvement in
AFCT over DCTCP is at least 40% for 10-20% load, which is
a realistic load in present-day data centers [4], [5], [6]. L2DCT
also improves both the 95th and 99th percentile of completion
times by up to 37% compared to DCTCP (see Figure 4(b)).

Figure 5 shows the corresponding throughput of long back-
ground flows. Observe that for data center traffic loads of 10%,
there is a difference in the throughput between L2DCT and
DCTCP of about 6.7%. At higher loads, more short flows
arrive per second, which increases this difference. As we
discuss in Section III-B.3, throughput of long flows can be
increased in these scenarios by a corresponding reduction in
flow completion times by adjusting the cap on wc.

2) Pareto Distributed Traffic: We generated flows with
sizes drawn from a Pareto distribution with mean 50 KB and
shape 1.2. This yields flow sizes that capture realistic data
center workloads [1]. In these settings, L2DCT improves over
DCTCP at all loads as shown in Figure 4(c), with 99th

percentile of FCT improved by up to 53%.
3) Incast Behavior: With L2DCT, short flows behave more

aggressively to increase their share of the network bandwidth.
Consequently, L2DCT may exacerbate Incast. To study the

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
T

hr
ou

gh
pu

t (
M

bp
s)

Offered Load (%)

TCP
DCTCP
L2DCT

Fig. 5. Throughput of long flows under the benchmark settings.

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40

A
FC

T
(m

se
c)

Number of Senders

L2DCT
DCTCP

TCP

(a)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

A
FC

T
(m

se
c)

Flow Size (Packets)

L2DCT
DCTCP

TCP

(b)

Fig. 6. AFCT under the Incast scenario. (a) Varying number of senders
with Uniform flow sizes with 25 KB mean. (b) Varying flow size with client
requests from 5 different servers.

Incast behavior, we assume a topology where multiple servers
send data (responses to queries) to one aggregator simultane-
ously through a single bottleneck link.

a) Impact of Number of Sending Servers: We vary the
number of simultaneous senders from 1 to 40 as done in
[1] and flow sizes are generated uniformly at random with
a mean of 25 KB. Even though RTOmin is set to 10 ms, TCP
performance still degrades when the number of senders in-
creases beyond 25. In contrast, even though L2DCT uses more
aggressive parameters for short flows, its stringent marking
policy allows Incast to be mitigated as shown in Figure 6(a).

b) Impact of Flow Size: We assume 5 sending servers
and vary the mean flow size (i.e., the size of response from
each server) from 50 KB to 600 KB. As the size of the flow
increases, AFCT for L2DCT and DCTCP degrades gracefully.
However, AFCT with TCP starts degrading when the mean
flow size is increased beyond 400 KB (see Figure 6(b)).

2013 Proceedings IEEE INFOCOM

2161

 0.95
 0.96
 0.97
 0.98
 0.99

 1

 5 10 15 20

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Senders

L2DCT
DCTCP

TCP

(a)

 20
 40
 60
 80

 100

 10 10.5 11 11.5 12Q
ue

ue
 L

en
gt

h
(P

kt
s)

Time (sec)

TCP

DCTCPL2DCT

T

(b)

Fig. 7. Performance of long-lived L2DCT flows. (a) Throughput achieved
by flows. (b) Queue length dynamics for two long-lived flows.

 200
 400
 600
 800

 1000

 4.5 5 5.5 6 6.5 7 7.5 8

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Long Flows
Short
Flows

Long Flows

(a)

 0

 20

 40

 60

 80

 100

 4.5 5 5.5 6 6.5 7 7.5 8

Q
ue

ue
 L

en
gt

h
(P

kt
s)

Time (sec)

(b)

Fig. 8. Performance of two long L2DCT flows when a sudden burst of short
flows arrives at time t = 6 s. (a) Throughput (b) Queue length dynamics.

B. L2DCT Specific Testing

We now evaluate how L2DCT performs as a congestion
control protocol.

1) Single Bottleneck Scenario: In this scenario, we evaluate
the throughput performance of long-lived L2DCT flows and
perform comparison with TCP and DCTCP. Figure 7(a) shows
the throughput of L2DCT, DCTCP, and TCP flows as a
function of the number of senders, each generating a single
long-lived flow. Observe that all protocols achieve ∼100%
throughput. However, L2DCT and DCTCP maintain much
smaller queue length compared to TCP as shown by Figure
7(b). L2DCT is able to maintain small queues due to gentle
backoffs based on the extent of network congestion.

2) Effect of Sudden Short Flow Bursts: We now consider
the scenario where a sudden burst of short flows arrive while
long-lived flows are active. This is a fairly common scenario
in data center environments.

Figure 8(a) shows the throughput of flows when 50 short
flows, each of size 50KB, arrive simultaneously in the presence
of an ongoing long-lived flow. Observe that L2DCT quickly
adapts to the sudden bursts of short flows converging to full
link utilization afterwards. In particular, the arrival of short
flows increases the queue occupancy, causing the long flows
to backoff more than short flows (see Figure 8(b)). When short
flows complete, long flow quickly grabs the entire bottleneck
capacity. Note that the low queue occupancy with L2DCT
implies that there is more room in the queue for absorbing
packet bursts. Moreover, long flows (> 1 MB) use k = 0.05,
which means they take ∼200 ms to achieve 1 Gbps.

3) Impact of the Weight Function: The performance
achieved by L2DCT depends on the weights assigned to
flows. Extremely low or high values may cause undesirable
behavior due to which we cap wc to be within (wmax = 2.5,
wmin = 0.125). In this section, we evaluate the impact of
varying wmax and wmin.

Figures 9(a) and 9(b) show the impact of varying wmax on
the AFCT of short flows and the throughput of long-lived flows
when the offered load is 20%. Observe that increasing wmax

reduces the AFCT as well as the throughput of long flows. This
happens because increasing wmax makes short flows more
aggressive, which leads to higher values for α. Since long
flows backoff significantly even for small α, this reduces their
throughput. Next, we vary wmin. Observe that the AFCT of
short flows and the throughput of long flow decreases when
wmin is decreased as shown in Figures 9(c) and 9(d). This
happens because decreasing wmin, increases the backoff factor
and lowers the additive increase for long flows, which reduces
their throughput in the presence of short flows. Therefore, we
set wmax to 2.5 and wmin to 0.125 to achieve a compromise
between the performance of short and long flows.

4) Deadline Constrained Flows: We now evaluate the
performance of L2DCT when flows have deadlines associated
with them and compare its performance with D2TCP [6], a
recently proposed deadline-aware protocol.

We replicate the traffic settings of Section III-A.1, and
determine the number of flows missing their deadlines. To
generate deadlines, we use the same approach as employed
in [4]. In particular, flow deadlines are generated using the
exponential distribution with mean 40 msec (tight deadlines),
60 msec (moderate deadlines) and 80 msec (lax deadlines).
Figure 10(a), 10(b), and 10(c) show that L2DCT outperforms
all protocols across a range of traffic loads including D2TCP,
which specifically accounts for flow deadlines. Since deadlines
are typically associated with short flows, these results suggest
that a deadline agnostic protocol, which minimizes completion
times, can achieve better performance than deadline-aware
protocols.

C. Multiple Bottleneck Scenario

To evaluate L2DCT’s performance in a multi-hop, multi-
bottleneck environment, we use the topology shown in Figure
11(a). A total of 30 senders (where S1, S2, and S3 represent
a set of senders) and 11 receivers are used in this case. We
generate long-lived flows, S1 → R1, S2 → R1 and S3 → R1.
Note that S1 competes with both S2 and S3 but at different
links. Therefore, we expect the throughput of S1 to be lower
than S2 and S3 because the throughput of TCP flows is
inversely proportional to the number of bottlenecks it traverses
[15]. Figure 11(b) shows the average per-flow throughput in
each sender set. Observe that with L2DCT, S1 achieves higher
throughput compared to TCP and DCTCP and is also able to
maintain better fairness.

D. Co-existence with TCP

TCP is a widely used congestion control protocol in cloud
data centers [1], [7]. Therefore, we now evaluate L2DCT’s
performance when it co-exists with TCP. Using a single
bottleneck topology, we generate multiple long-lived flows
and observe the effect of varying k and wc on the relative
throughput of L2DCT and TCP.

Figures 12(a) and 12(b) show the throughput as a function
of k for two cases: (a) one flow is generated by each protocol,
and (b) each protocol generates two flows. Observe that as

2013 Proceedings IEEE INFOCOM

2162

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0.5 1.5 2.5 3.5 4.5

A
FC

T
(m

se
c)

wmax

L2DCT: wmin=0.125

(a)

 0

 100

 200

 300

 400

0.5 1.5 2.5 3.5 4.5

Th
ro

ug
hp

ut
 (M

bp
s)

wmax

L2DCT: wmin=0.125

(b)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0.031 0.062 0.125 0.25 0.5

A
FC

T
(m

se
c)

wmin

L2DCT: wmax=2.5

(c)

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.031 0.062 0.125 0.25 0.5

Th
ro

ug
hp

ut
 (M

bp
s)

wmin

L2DCT: wmax=2.5

(d)
Fig. 9. Impact of varying wmax and wmin on the AFCT of short flows and the throughput performance of long-lived flows.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

D
ea

dl
in

es
 M

is
se

d
(%

)

Offered load (%)

L2DCT
D2TCP
DCTCP

TCP

(a) Tight Deadlines

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

D
ea

dl
in

es
 M

is
se

d
(%

)

Offered load (%)

L2DCT
D2TCP
DCTCP

TCP

(b) Moderate Deadlines

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

D
ea

dl
in

es
 M

is
se

d
(%

)

Offered load (%)

L2DCT
D2TCP
DCTCP

TCP

(c) Lax Deadlines

Fig. 10. Deadlines missed by various protocols. (a) Tight deadlines (40 ms). (b) Moderate deadlines (60 ms). (c) Lax (80 ms). Observe that L2DCT misses
the least number of deadlines.

S2: 10 sendersS1: 10 senders

S3: 10 senders R2: 10 receivers

R1

1 receiver

(a)

 20
 40
 60
 80

 100

 1 2 3

Fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Sender set

L2DCT
DCTCP

TCP

(b)

Fig. 11. Throughput performance under multiple bottleneck topology

 0

 200

 400

 600

 800

 1000

 0 0.25 0.5 0.75 1

T
hr

ou
gh

pu
t (

M
bp

s)

Additive Increase (k)

L2DCT
TCP

(a)

 0

 200

 400

 600

 800

 1000

 0 0.25 0.5 0.75 1

T
hr

ou
gh

pu
t (

M
bp

s)

Additive Increase (k)

L2DCT
TCP

(b)

Fig. 12. Throughput of long-lived TCP and L2DCT flows when they co-exist.
Each protocol generates (a) one flow and (b) two flows.

k increases, L2DCT flows become more aggressive, thus
achieving much higher throughput than TCP flows. Since
there are very few concurrent long flows in data centers [1],
using k < 0.25 can provide suitable fairness between TCP
and L2DCT flows. Note that L2DCT uses k = 0.05 (as
wmin = 0.125) for long flows.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90

A
F

C
T

 (
m

se
c)

Offered Load (%)

L2DCT-SRPT
L2DCT-LAS

L2DCT-PS

Fig. 13. AFCT under different scheduling disciplines

E. Realizing Other Scheduling Policies

In this section, we show how L2DCT can approximate
a variety of scheduling policies such as SRPT and PS by
adapting the flow weights. To realize SRPT, the weights are
now adapted based on the remaining flow data instead of the
data sent so far. For PS, we set wc = 1 for all flows. Figure
13 shows that LAS is a good approximation of SRPT. PS,
however, results in a much larger AFCT.

IV. REAL TESTBED IMPLEMENTATION

We built a small-scale testbed to evaluate the performance
of L2DCT in real network settings.

A. Linux Implementation Details

L2DCT requires very few changes at the end-hosts and none
at the routers. It is implemented as a kernel module in Linux
2.6.38, which supports pluggable congestion control. L2DCT
inherits important features of TCP such as retransmission
and fast recovery mechanism. We used DCTCP’s end host
implementation for building L2DCT.

a) Marking at the Switch: For realizing L2DCT’s switch,
we use the RED queue implementation in Linux. We set the

2013 Proceedings IEEE INFOCOM

2163

 0

 5

 10

 15

 20

 25

 30

1 2A
F

C
T

 Im
pr

ov
em

en
t (

%
)

Number of short flows

DCTCP
TCP

(a)

 20

 40

 60

 80

 100

 5 10 15 20 25

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

L2DCT
DCTCP

TCP

(b)

Fig. 14. Linux results for L2DCT (a) AFCT and (b) Long flow throughput.

low and high thresholds of RED queue to K and perform
marking based on the instantaneous rather than the average
queue length as done in RED.

b) Sender-Side Modifications: L2DCT introduces changes in
the additive increase and multiplicative decrease parameters
used by TCP. In addition, it computes the fraction of marked
packets to infer the degree of congestion at the bottleneck.
L2DCT uses an array to hold pre-computed values of the
backoff penalty b for each α and weight wc in order to avoid
floating point calculations.

c) Receiver ECN Echo Mechanism: L2DCT introduces no
changes at the receiver end and its ECN echo mechanism is
the same as DCTCP.

B. Linux Evaluation

Our testbed comprises of three Linux machines, each
equipped with a 100Mbps Realtek ethernet card. One machine
acts as a client, one as a server and the other as a switch. We
set K at 8 packets. We compare L2DCT’s performance with
DCTCP and TCP NewReno with ECN support.

We use Iperf for traffic generation. Due to the timer res-
olution limitations in Iperf, we generate and give maximum
weight to flows of length 100 MB and adapt the weight
assignment policy accordingly. Note that this is just for the
validation of our implementation and does not represent actual
data center workloads.

We start a single long-lived flow in the background and
generate multiple short flows simultaneously. We repeat each
experiment 10 times for each number of flows. Figure 14(a)
shows the improvement in AFCT of L2DCT over DCTCP
and TCP as a function of the number of simultaneous short
flows. Note that this represents a very high load scenario as
each flow has 100 MB of data to send. Observe that L2DCT
improves the AFCT by up to 20% and 29% over DCTCP
and TCP, respectively. Figure 14(b) shows the corresponding
throughput of the long flow when one short flow arrives.
Observe that with L2DCT, the long flow throughput reduces to
∼20 Mbps whereas the short flow gets ∼80 Mbps. This allows
the short flow to finish quickly, thus causing the long flow to
obtain maximum throughput sooner than other protocols. Since
DCTCP and TCP are fair sharing protocols, short flows obtain
∼50 Mbps of throughput with them. This causes the DCTCP
and TCP short flows to finish 4 s and 5.5 s later, respectively.

V. RELATED WORK

The relevant literature on congestion control, scheduling,
and reducing latency is vast. Therefore, in this section, we
only summarize some of the most relevant works.

CUBIC [16], BMCC [17], XCP [18], and delay-based con-
gestion control protocols, such as FAST [19] and CTCP [20],
all successfully improve performance in high BDP networks.
However, these protocols approximate fair sharing and thus
are sub-optimal in terms of completion times. Rate Control
Protocol (RCP) improves the AFCT by reducing the startup
latency of flows [8]. However, RCP is also a fair sharing
protocol and requires router hardware modifications [1].

In [21], authors propose HULL which is based on capping
utilization at less than link capacity. By sacrificing some
amount (e.g., 10%) of bandwidth, HULL can reduce the
average and tail latencies. Our work is complementary to
HULL. In particular, L2DCT can be combined with their
proposal to further reduce completion times. However, it is
useful to note that L2DCT reduces completion times without
sacrificing link capacity. In [22], Zats et al. propose DeTail, an
in-network congestion management mechanism that reduces
the flow completion time tail in data center environments.
However, DeTail does not target AFCT. Unlike DeTail, L2DCT
can save up to ∼45% over DCTCP and ∼95% over TCP. In
addition, it reduces the completion time of almost every flow.

Earliest Deadline First (EDF) is provably optimal when in-
dividual packets are associated with deadlines. However, when
associated with flows, applying EDF to individual packets is
not only suboptimal but can increase network congestion [4].

QCN, an optional standard for Ethernet, uses multibit
feedback from the switches to reduce recovery time during
congestion. However, QCN cannot span beyond L2 domain
limiting its scope of application [1].

To approximate LAS, one could use priority queuing at
the switches. However, prior studies show that using two-
level priorities, TCP/RCP with priority queuing suffer from
high loss rate and falls behind D3 [4]. Further, increasing the
priority does not significantly improve performance as flows
within each class may have widely different sizes and yet they
are not differentiated. Consequently, large number of priority
classes are needed, however, switches nowadays provide only
a small number of classes, usually no more than ten [4], [10].

Yang et al. [23] proposed TCP SAReno, which adapts
AIMD parameters based on the residual flow size assuming
droptail queuing. First, it uses a small number of classes and
therefore, faces the same issues as TCP with priority queuing.
Second, it uses fixed parameters for each class, and thus
considerably degrades the performance of long flows even in
the absence of short flows. Zieglar et. al. [24] also proposed to
dynamically adapt AIMD parameters for improving the startup
latency of short flows. However, with their protocol, a short
flow achieves no higher throughput than long flows for the
protocol to be incentive-compatible with TCP.

Several recent works, such as [25], show the benefit of using
multi-path TCP, ranging from improved network utilization to
better reliability. However, developing a multi-path version of
L2DCT is part of future work.

2013 Proceedings IEEE INFOCOM

2164

VI. DISCUSSION AND FUTURE WORK

Fairness. One may argue that the performance gains of
L2DCT over other protocols are due to the fact that it unfairly
penalizes long flows. It turns out that the performance im-
provement over fair sharing protocols does not usually come
at the expense of long jobs. Bansal et al. [9] showed that
with SRPT, at least 99% of the jobs have smaller completion
times compared with fair sharing3. Moreover, this percentage
increases even further when the traffic load is less than half.
Typical data center workloads are generally less than 50% [6].
Further, if desired, an operator can always set the weight of
flows to achieve a wide range of bandwidth sharing criteria,
including fairness. For instance, to achieve fair sharing, an
operator could set wc = 1 for all flows.
Gaming the System. One could ask whether users will have
an incentive to improve the completion time of their flows
by splitting them into smaller flows. While the incentive is
greater in case of L2DCT compared to fair sharing protocols,
similar issue also arises in TCP and RCP, where users may
achieve higher aggregate throughput by splitting a flow into
smaller ones, as well as in D3, where users may request a
higher rate than the flow actually needs. With PDQ, however,
the incentive may be even greater as PDQ does preemption of
flows whereas L2DCT does not. To address this, users with
multiple flows can be penalized by changing their weights.
However, designing a scheme to achieve this end remains a
future work. We would like to point out that in data center
environments, connectivity to the external Internet is typically
managed through application proxies that effectively separate
internal traffic from external, therefore, issues of fairness with
conventional TCP outside are irrelevant [1].
When flow completion time is not the priority. For real-time
applications such as VoIP, flow completion time is not the best
metric. For such applications, a constant wc can be assigned,
making it equivalent to a DCTCP flow.
Stability. If all flows are short and thus demand a high share
of the bandwidth, network overload may occur. However,
L2DCT’s backoff mechanism guards against such overload on
two fronts: (1) When α approaches one, L2DCT defaults to the
same backoff as TCP, therefore, L2DCT’s worst case stability
is similar to that of TCP. (2) We limit the maximum value of
wc to 2.5, which limits the aggressiveness of short flows.

VII. CONCLUSION

We design and implement L2DCT, a data center transport
protocol, which targets minimizing the flow completion times
by approximating the LAS scheduling discipline. L2DCT can
co-exist with TCP and delivers high application throughput
by meeting more deadlines than existing protocols. For a
wide range of data center workload scenarios L2DCT provides
up to 45% and 95% reduction in AFCT over DCTCP and
TCP. The 99th percentile improvement in flow completion
times over DCTCP is up to 37% and 53% when the flow
size distribution is uniform and Pareto, respectively. Though
L2DCT is deadline unaware, owing to its goal of minimizing

3Assuming M/G/1/SRPT queueing model with heavy-tailed distributions.

flow completion times, it would miss up to about 35% fewer
deadline compared to a recent deadline-aware protocol D2TCP
for tight as well as lax deadlines. These improvements come at
a cost of small throughput degradation for background flows;
although this does not impact the end-user response time, it can
still be easily addressed by adjusting wc. However, data center
operators must evaluate the impact of using L2DCT using
their own traffic and network profile. We also implemented
L2DCT on Linux demonstrating that it does not require
any flow specific information from applications and can be
easily deployed without requiring any additional hardware and
software support.

REFERENCES

[1] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM’10.

[2] T. Hoff, “Latency is everywhere and it costs you sales how to
crush it,” July 2009, http://highscalability.com/blog/2009/7/25/latency-
is-everywhere-and-it-costs-you-sales-how-to-crush-it.html.

[3] D. Abts and B. Felderman, “A guided tour of data-center networking,”
Commun. ACM, vol. 55, no. 6, pp. 44–51, June 2012.

[4] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than late: Meeting deadlines in datacenter networks,” in SIGCOMM’11.

[5] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of
data centers in the wild,” in IMC’10.

[6] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter tcp (d2tcp),” in SIGCOMM’12.

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control
for tcp in data center networks,” in Co-Next’10.

[8] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-
cessor sharing flows in the internet,” in IWQoS, 2005.

[9] N. Bansal and M. Harchol-Balter, “Analysis of srpt scheduling: investi-
gating unfairness,” in SIGMETRICS’01.

[10] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM’12.

[11] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of las schedul-
ing for job size distributions with high variance,” in SIGMETRICS’03.

[12] K. K. Ramakrishnan and S. Floyd, “The addition of explicit congestion
notification (ECN) to IP,” in IETF RFC 3168, Sep 2001.

[13] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM’04.

[14] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-grained
tcp retransmissions for datacenter communication,” in SIGCOMM’09.

[15] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit
is enough,” in SIGCOMM’05.

[16] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” in PFLDNet’05, 2005.

[17] I. A. Qazi, L. L. H. Andrew, and T. Znati, “Congestion control with
multipacket feedback,” in IEEE/ACM Trans. on Networking, 2012.

[18] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control for
high bandwidth-delay product networks,” in SIGCOMM’01.

[19] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, architecture,
algorithms and performance,” in INFOCOM’04.

[20] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in INFOCOM’06.

[21] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in NSDI’12.

[22] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks,” in
SIGCOMM’12.

[23] S. Yang and G. De Veciana, “Enhancing both network and user perfor-
mance for networks supporting best effort traffic,” IEEE/ACM Trans. on
Networking, 2004.

[24] T. Ziegler, H. Tran, and E. Hasenleithner, “Improving perceived web
performance by size based congestion control,” NETWORKING’04.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in SIGCOMM’03.

2013 Proceedings IEEE INFOCOM

2165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

