
DataSense: Min Overhead, Max Accuracy
Saad Naveed Ismail, Fareeha Irfan Khawaja

Computer Science Department, LUMS
Email: {14100055,15100235}@lums.edu.pk

Abstract—Software Defined Networking promises to simplify
network management tasks by separating the control plane (a
central controller) from the data plane (switches). OpenFlow has
emerged as the standard for communication between the control
and data plane. Apart from this, it also provides a high level
interface to collect different types of statistics from thedata plane.
Network applications can use this high level interface to monitor
network status without being concerned about the low level
details. This mechanism is implemented as a pull-based service,
i.e. the controller has to query the switches for statisticsand then
in turn, the switches respond with a reply corresponding to the
type of statistics request. The frequency of polling and number of
switches polled determines the accuracy and network overhead.
An important aspect is to gather statistics with minimal overhead,
while maintaining high accuracy so then that the results would
be relevant. In this paper, we focus on leveraging the structure of
k-ary FatTrees and use that to design an algorithm for querying
a subset of the switches while maintaining accurate statistics of
the whole k-ary FatTree topology. The accuracy of our solution
is demonstrated through emulations in Mininet.

I. I NTRODUCTION

Monitoring statistics of the network is crucial for network
management. It requires accurate statistics while not incurring
a large overhead. In data centers we can use these statistics
for load balancing, traffic engineering, enforcing ServiceLevel
Agreements (SLAs), and for even fault detection (thus toler-
ance). A well designed network monitoring framework should
provide the management applications with a wide selection of
network metrics.

Recently, Software Defined Networking (SDN) has emerged
as new paradigm that promises to facilitate network pro-
grammability and ease management tasks. SDN proposes to
decouple the control plane from the data plane. The OpenFlow
protocol has been accepted as the standard interface between
the control and data plane. OpenFlow provides statistics col-
lection primitives at the controller. The controller couldeither
poll a switch to collect statistics on the active flows or it can
request a switch to push flow statistics (upon flow timeout) at
a specific frequency.

PayLess [1] is a recently proposed network monitoring
framework for SDN that adaptively changes the inter-pinging
time of flow statistics request from all switches based on the
differences in byte count. They have shown there work to be
very effective in reducing network overhead while providing
highly accurate results. However, one problem is that in case of
large number of flows being sent from one host to another, the
network overhead caused by requesting and getting responses
for flow statistics would be very large.

The scenario we are concerned about is that of a data center.
Where the network topology is that of a FatTree [2], while the
traffic scenario is that as found in DCTCP [3]. In this paper, we
propose DataSense, a network montoring scheme for FatTree
data centers that leverages the structure of the FatTree topology
to provide accurate statistics while abstaining from requesting
for flow statistics.

The rest of the paper is organized as follows. We describe
the details of DataSense and insights used while designing
it in Section II. An analysis of the reduction in overhead
by DataSense is presented in Section III. The related work
is discussed in Section IV followed by some future work in
Section V. We offer concluding remarks in Section VI.

II. DATA SENSESCHEME

We define the overhead as being the amount of control traf-
fic when querying and receiving responses. Accuracy would
be defined as how closely our results match that of querying
all switches/links for their statistics.

A. Background

PayLess [1] proposes to adapt the inter-pinging time based
on the changes of byte count of flow statistics. If the difference
is large, then it would decreases the inter-pinging time to
maintain high accuracy. In case there is very little (or no)
difference in byte count, then the inter-pinging time would
increase so it would poll less often and therefore reduce the
overhead. While their results are good, we would prefer to stay
away from using flow statistics. This is because,the network
overhead would be dependent on the number of flows in
the data center. In data center networks, there are a couple
of long flows but there are a large number of short flows
(especially when in a cloud data center, the hosts would send
back responses to user query) that would increase the overhead
significantly.

B. Basic Idea and Assumptions

DataSense accurately gets the link utilization of all linksby
querying a subset of the links for their utilization and then
using this to infer the utilization in the links that we have
not queried for statistics. The principle: all that flows in to a
switch (or node) equals to all that flows out of the switch (or
node).

To modulate flowsin equals to flowsout without using flow
statistics, we can think of a flow as a sequence of bytes. Thus,
we can take our principle to be the numBytesin of a switch
in an interval would equal the numBytesout of a switch in



Fig. 1. k-ary FatTree design as proposed in [2], where k=4

that same interval. Thus by using simply sending port/queue
statistic requests to switches, we can figure get the transmitted
and received byte count in a switch. After that, by knowing
the inter-pinging time and the capacity of the link, we can
figure out utilization of the link.

Our scheme currently is slightly constrained in that, it makes
the following assumptions about the data centers:

• The data center topology is a k-ary FatTree as defined by
Al-Fares et. al. in [2]. We are sticking with this because
the FatTree topology is a very common one in data center
networks.

• In our data center, no link or switch will fail. Thus, we
will be getting statistics from a fixed number of switches
and their ports/queues. Their will not be variations due
to a link connected to a port failing or due to a switch
failing.

• There will be no delays, whether they are transmission
delays, propagation delays or queueing delays. We make
this assumption so then that our principle of flowsin

equals flowsout would hold accurately, delays would add
a bit of inaccuracy. We give a small mention about this
in our Future Works in Section V.

C. Scheme

Our scheme was incrementally developed on a case-by-case
basis. Each case adds another level of complexity w.r.t. the
way traffic may flow and then correspondingly it adds another
layer of complexity to our scheme because case by case our
scheme develops to take into account more and more different
ways that the traffic could flow in the data center.

In a k-ary FatTree [2], each pod hask/2 Aggregation (Agg.)
switches andk/2 ToR switches. Under each ToR switch, there
arek/2 host physical machines. Each Agg. switch is connected
to k/2 Core switches and all of thek/2 ToR switches in its
own pod. And each ToR switch is connected to thek/2 host
physical machines under it and all thek/2 Agg. switches in
its own pod (in Figure 1 you can see this for a 4-ary FatTree).

The base case way to get all statistics is query all ToR
switches for port statistics on its upward and downward
ports (for Agg. links and ToR links statistics, respectively).
And get the Agg. switches to query all upward ports (for
Core link statistics). The port statistics response contains both
transmitted and received byte count fields. However, it also

contains a few other fields that increase the size of the response
but are not needed by us to get utilization of the link.

One change we can make here is that we query for queue
statistics. It only contains the transmitted byte count field, not
a received byte count field. So, we would make the ToR switch
query for upward queue statistics to get the upward utilization
of the Agg. link and the corresponding Agg. switches for
downward queue statistics so then that we get the downward
utilization for the Agg. link.
Overhead for 1 port statistic is:

bytesrequest + bytesresponse = 8 + 104 = 112.
Overhead for 2 queue statistics is:

2 x (bytesrequest + bytesresponse) = 2 x (8 + 32) = 80.

However, the ToR, switch would have to query for port
statistics so it can also get the byte count received because
it is not possible to get the byte count transmitted from the
host.

Case 1: All traffic that flows is from a host under one
pod to a host under a different pod.

For every Agg. switch we query allk/2 ports for query
statistics that are connected to ToR switches but onlyk/2− 1
ports for query statistics that are connected to Core switches.

Case 2:However, traffic does not only flow in the scenario
described in Case 1. Traffic can also remain within a pod.
Where the traffic’s destination is a host under a different ToR
switch from the traffic’s source host. This way, traffic would
flow up from a ToR switch to the Aggregation switch, but
them come down to another ToR switch in the same pod.

In this case, the change is that we query queue statistics
the Agg. switch along the link that is connected to thek/2th
Core switch to figure out how much it has transmitted to it (up
utilization). But it infers amount received (down utilization)
across thek/2th Core link via calculation.

After this, we can go about making one more optimization
(Improved Case 2). Each ToR switch queries onlyk/2 − 1
ports that are connected to Agg. switches.

Case 3: After making the 2nd optimization mentioned
at the end of Case 2. Another scenario impacts our accuracy.
Traffic could be traversing under the same ToR switch. So it
goes from one host under a ToR switch to another host under
the same ToR switch.

The solution for this would be the same as that provided in
Case 2. The ToR switch would query thek/2 Agg. switch to
get the amount transmitted (up utilization) and then it infers
the amount received (down utilization) across thek/2 Agg.
link via calculation in the same manner as done in Case 2.

III. A NALYSIS

Stats for OpenFlow [4] and FatTree [2] are present in Table
I.



Size of flow stats request 8 bytes
Size of flow stats response 88 bytes
Size of port stats request 8 bytes

Size of port stats response 104 bytes
Size of queue stats request 8 bytes

Size of queue stats response 32 bytes
Number of pods k

Number of links at each level k3/4
Number of ToR , Agg. switches per pod k/2 , k/2

Number of ToR , Agg. switches in data centerk3/4 , k3/4
Number of Core switches k2/4

TABLE I
TABLE OF DIFFERENT STATISTICS

In this section we would be analyzing the reduction in
overhead by using our scheme. Values used can be referred
to from Table I.

Base Case:
Overhead of a ToR or Agg switch getting Port statistics is

112 bytes. We make 3 xk3/4 requests.

Baseoverhead = 112 ∗ 3 ∗ k3/4 = 84 ∗ k3.

Improved Base Case:
Overhead of a ToR or Agg switch getting Queue statistics

is 40 bytes. We make 4 xk3/4 requests.
Overhead of a ToR or Agg switch getting Queue statistics

is 112 bytes. We make 1 xk3/4 requests.

ImprovedBaseoverhead = (112 ∗ k3/4) + 4 ∗ (40 ∗ k3/4)

=> ImprovedBaseoverhead = 28 ∗ k3 + 40 ∗ k3/4

=> ImprovedBaseoverhead = 68 ∗ k3

Case 1:
Overhead of a ToR or Agg switch getting Queue statistics is

40 bytes. We make 2 xk3/4 requests and 2 x(k3 − 2 ∗ k2)/4
requests.

Overhead of a ToR or Agg switch getting Queue statistics
is 112 bytes. We make 1 xk3/4 requests.

Case2overhead = 28∗k3+40∗ (2∗k3/4+2∗ (k3−2∗k2)/4)

=> Case2overhead = 28 ∗ k3 + 10 ∗ (4 ∗ k3 − 4 ∗ k2)

=> Case2overhead = 68 ∗ k3 − 40 ∗ k2

Case 2:
Overhead of a ToR or Agg switch getting Queue statistics is

40 bytes. We make 3 xk3/4 requests and 1 x(k3 − 2 ∗ k2)/4
requests.

Overhead of a ToR or Agg switch getting Queue statistics
is 112 bytes. We make 1 xk3/4 requests.

Case2overhead = 28∗k3+40∗ (3∗k3/4+1∗ (k3−2∗k2)/4)

=> Case2overhead = 28 ∗ k3 + 10 ∗ (4 ∗ k3 − 2 ∗ k2)

=> Case2overhead = 68 ∗ k3 − 20 ∗ k2

Improved Case 2:

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Value of k in k−ary FatTree

O
ve

rh
ea

d 
in

 w
ho

le
 d

at
a 

ce
nt

er
 (

by
te

s)

 

 

Base case
Case 1

Case 2

Case 3

Fig. 2. Overhead for our scheme, case-by-case

Overhead of a ToR or Agg switch getting Queue statistics is
40 bytes. We make 1 xk3/4 requests and 3 x(k3 − 2 ∗ k2)/4
requests.

Overhead of a ToR or Agg switch getting Queue statistics
is 112 bytes. We make 1 xk3/4 requests.

ImprovedCase2overhead = 28∗k3+40∗(1∗k3/4+3∗(k3−2∗k2)/4)

=> ImprovedCase2overhead = 28∗k3+10∗(4∗k3−6∗k2)

=> ImprovedCase2overhead = 68 ∗ k3 − 60 ∗ k2

Case 3:
Overhead of a ToR or Agg switch getting Queue statistics is

40 bytes. We make 2 xk3/4 requests and 2 x(k3 − 2 ∗ k2)/4
requests.

Overhead of a ToR or Agg switch getting Queue statistics
is 112 bytes. We make 1 xk3/4 requests.

Case3overhead = 28∗k3+40∗ (2∗k3/4+2∗ (k3−2∗k2)/4)

=> Case3overhead = 28 ∗ k3 + 10 ∗ (4 ∗ k3 − 4 ∗ k2)

=> Case3overhead = 68 ∗ k3 − 40 ∗ k2

Savings:
The lower bound on percentage savings is (we get this lower
bound by getting rid of the ”-40 xk2” factor):

= (84 - 68) / 84 x 100
= 19 %.

Figure 2 shows the overhead for each case.

IV. RELATED WORK

There exists a number of flow based network monitoring
tools for traditional IP networks. NetFlow [5] from Cisco
is one of the most prominent ones. JFlow [6] by Juniper
Networks is very similar to NetFlow. Both are expensive and
incur a large setup cost to be deployed.

OpenSketch [7] which allows for development of more
expressive traffic measurement applications while using their
three stage packet processing pipeline design. OpenTM [8]
focuses on efficiently measuring a traffic matrix using existing



technology. [9] and [10] propose other methods for network
monitoring.

There has been an everlasting trade-off between accuracy
of statistics collection and resource usage overhead for moni-
toring in IP networks. We, however, are concerned with data
center environments. According, to the best of the authors’
knowledge, DataSense is the first of its kind scheme meant
for data center networks, and in essence with the FatTree
topology.

V. FUTURE WORK

Other Topologies: We would like to try out our scheme
in other topologies. The core fundamental idea is that flowsin

equals flowsout of a switch. Therefore, even if we try this out
in a single rooted tree or other topologies, we would just have
to adapt the switches that we query using this same idea of
numBytesin equals the numBytesout.

Combine with PayLess: We would like to implement
DataSense in conjunction with PayLess. Or make a modified
version of PayLess that would check for byte counts from
port and/or queue statistics instead of flow statistics. Andthen
combine our method with modified PayLess.

Other Factors: Currently our algorithm works excellently
with the traffic scenario present in data centers [3]. We would
like to incorporate other factors such as failure rates and
link/queuing delays. We would be really interested in seeing
that if our results would be accurate enough with standard
failure rates. Looking at the transmitted and received bytes
dropped could help us in this regard, but the validation of
this assumption is left as a future work. To get failure rates,
we could use insights from [11] and [12]. Taking standard
queueing delays, it would be interesting to see that how
accurate would our scheme remain. Intuitively, if we ping at
approximately average queueing delay, then to maintain very
high accuracy, we could do flowsout equals flowsin of previous
ping. Or flowsout of current interval equals to an average of
flowsin of previous interval and flowsin of current interval.

Real Testbed: Scenarios in simulated environments like
Mininet provide us with an ideal scenario and thus ideal
results. We would like to test out in a real test bed scenario,
preferably Emulab and see with the lag, failures of switches
and links, would our algorithm maintain accuracy.

VI. CONCLUSION

In this paper, we proposed a scheme, DataSense, and
completed an analysis to see how much overhead would be
reduced. We find that DataSense does reduce the overhead of
statistics collection compared to the base case.

REFERENCES

[1] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in NOMS’14.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” inSIGCOMM’08.

[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM’10.

[4] “OpenFlow Switch Specification Version 1.0.0,” https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.0.0.pdf.

[5] “Introduction to Cisco IOS NetFlow,” http://www.cisco.com/c/en/
us/products/collateral/ios-nx-os-software/ios-netflow/prod white
paper0900aecd80406232.html.

[6] A. C. Myers, “Jflow: Practical mostly-static information flow control,”
in SIGPLAN-SIGACT’99.

[7] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” inNSDI’13.

[8] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: Traffic matrix
estimator for openflow networks,” inSpringer’13.

[9] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “Flowsense: Monitoring network utilization withzero mea-
suremet ghost,” inSpringer’13.

[10] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” inHotICE’10.

[11] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in SIG-
COMM’11.

[12] R. Potharaju and N. Jain, “When the network crumbles: Anempirical
study of cloud network failures and their impact on services,” in
SoCC’13.


