On the Effectiveness of CoDel in Data Centers

Saad Naveed Ismail, Hasnain Ali Pirzada, Ihsan Ayyub Qazi
Computer Science Department, LUMS
Email: {14100055,15100061,ihsan.gp@lums.edu.pk

Abstract—Large-scale data center applications like web search, multiplexing, both of which hold in data center environnment
social networking, and recommendation systems simultanesly (see [3] and the references therein).

require high throughput for long flows, small completion times .

for short flows, and high burst tolerance. However, meeting Controlled Delay Man_agement (CoDel) [9] is an AQM
these requirements is a challenging task. First, long TCP fiss Scheme, proposed for wide area networks, that addresses the
maintain high buffer occupancy, which increases the compteon bufferbloatproblem; a condition in which excessive buffering
time of short flows. Second, many data center applications @ in routers and switches leads to high latency. CoDel aims to
architected to follow the Partition-Aggregate workflow pattern, gliminate standing queues that introduce large delays but d

which gives rise to synchronized flows. In the presence of lgn . . }
flows, this significantly degrades the performance of short fiws. not contribute to throughput improvement. A key benefit of

CoDel is a promising active queue management scheme propdse CoDel over AQMs like RED is the. lack of need to anpt
for wide area networks to addresshufferbloat; a condition in parameters based on changing traffic and network conditions

which excessive buffering leads to high latency. In this pagr, we This paper studies the effectiveness of CoDel in meeting the
rigorously evaluate the effectiveness of CoDel in data ceait envi- requirements of data center applications.

ronments. Our results show that CoDel significantly outperbrms . . .
RED and DropTail under both incast and non-incast scenarios 1owards this end, we conduct a rigorous evaluation of

due to its ability to better handle bursty traffic. In particu lar, it ~CoDel under typical data center settings such as incast and
reduces average flow completion times by up to 35% and 65% non-incast scenarios [6], [10] and compare results with RED
compared to RED and DropTail, respectively. We also suggest and DropTail queues. Our results show that CoDel outpergorm
ways to configure CoDel for data center environments. RED and DropTail under both incast and non-incast scenarios
in terms of average flow completion times (AFCT) while main-
|. INTRODUCTION taining high link utilization. In particular, it reduces &H's
. . by up to 35% and 65% compared to RED and DropTail,
Large_—scale onl_ln_e services such as web seqrch, So?épectively. This happens for two key reasons: (a) CoDel
networking, advertising systems, and recommendatioesyst accommodates packet bursts better than RED and (b) CoDel

generate a mix of short and long flows and require three thingéaptively adjusts the packet dropping rate by reducing the

from the underlying data center network: high thrOUthﬁ%e between drops based on the persistence of congestion.
for long flows, low latency for short flows, and high bu

"She first characteristic helps CoDel in accommodating large
tolerance [1].)))] packet bursts that arrive under incast without reacting too
_However, meeting these requirements is a challenging tagigressively to instantaneous queue buildups. The second
First, long-lived TCP flows deliberately fill buffers [2]. Th characteristic, ensures that drops occur only when coiogest

causes the average queue length to increase which in 4 gistent, which helps in ensuring high throughput a6 we
increases the completion time of short flows [3]. Second ymagq i, eliminating any extra delays. In addition to our insigh

data center applications (e.g., web search, MapReduce) h@, 450 suggest ways to configure CoDel for data center

workflow patterns that lead to many-to-one communicatiqthyironments. To our knowledge, this is the first work which

[1], [4]. For example, under theartition/Aggregatenorkflow gystematically analyzes the performance of CoDel in data
pattern, a user request is partitioned amongst severaleworksiars.

nodes within the data center and the responses from thesg, . ..« of the paper is organized as follows. We dis-

nodes are then combined by an aggregator node befor%u s characteristics of data center traffic and describe AQM

response is sent to the user. SUCh. workflows result "N sBhemes in section II. We analyze the performance of CoDel
large number of short flows that arrive synchronously at.a

switch leading to incast, which significantly degrades st in section Ill. The related work is discussed in section I\e W

X o offer concluding remarks in section V.
throughput and increases the completion time of short flows g

[5], [6].

Active queue management (AQM) schemes aim to achievel. BACKGROUND: DATA CENTER TRAFFIC AND AQMS
high throughput and low delay by pro-actively mark-
ing/dropping packets at the routers [7], [8]. However, gxi In this section, we first discuss the nature of data center
AQM schemes, such as Random Early Detection (RED) [#gffic and the requirements of cloud applications from the
and Random Exponential Marking (REM) [8], do not workunderlying data center network. We then describe CoDel and
well when the traffic is bursty and there is low statisticahe RED AQM.

CoDel

11 ¢ & ss

A. Data Center Traffic

User facing and large-scale online applications like we
search, recommendation systems, and social networks &s \
as data processing frameworks like MapReduce [4] achie _ .
horizontal scalability by partitioning a task of resporglito e Lo Queue Length W tor-Dropping Times

users amongst several machines (possibly involving meltig
|ayer5) [1] Fig. 1. The figures shows (a) drop probability of RED as a fiamcbf the

L. . queue length, (b) drop probability of DropTail as a functminqueue length,
Such a Parition/Aggregateapplication structure of data g (c) inter-dropping times with CoDel under persistemgestion.

center applications often results in bursts of concurrentdl

that can severely degrade network throughput, leadingéo f

incast impairment [3]. Moreover, the presence of long-livec RED: The RED AQM probabilistically drops/marks packets

TCP flows, which keep high buffer occupancy increases twhen the average queue length exceeds a minimum threshold

response times of latency sensitive flows. These issuegdeamin,;,. The dropping probability increases linearly from zero

three key application requirements from the underlyingadaat min,, to maz, at the thresholdnaz;,. When the aver-

center network fabric. (1) High throughput for long flows) (2age queue length exceeds this second threshold:(,), all

small completion times for short flows, and (3) high bursiackets are dropped with probability 1. The dropping patter

tolerance to handle bursts under incast. of the three queueing schemes, DropTail, RED and CoDel, is
visualized in Figure 1.

DropTail

Drop Probability
Drop Probability
Number of Drops

o

B. Active Queue Management Schemes

CoDel CoDel [9] is a delay based AQM scheme that Wi | h ‘ ¢ CoDel in dat ‘
aims to keep low delays while maintaining high network ¢ now analyze the performance of L.oLE€l In data center

throughput. Many prior AQMs, such as RED and REM, th(,]letnvironments. First, we study impact bar get on network

aim for a similar goal require adaptive tuning of parametef’g'l'zat'on and average queue length with the help of a
based on network characteristics and traffic conditionschvh model :_;md ns2 S|mulat!ons. We then carry O.Ut a performance
can change over time [11]. CoDel, on the other hand, does ﬁgta\luatlon of C_oDeI with RE_D an(_:i DropTa|I_ queues under
require tuning of parameters and can adapt to dynamica'WaSt and non-incast scenarios using ns-2 simulations.
changing link rates and round-trip delays. CoDel maintains

two constants namely, arget andinterval . target clent
refers to the acceptable queueing delay ander val is the

time over which congestion is measured and is in the order ¢

IIl. CoDEL IN DATA CENTERS

W, W=BDP W=BDP+(CxQ)
| N \

TOR switch

Cc
a worst-case RTT of connections.
The basic mode of operation of CoDel is as follows: Every
packet that enters the queue is given a time stamp and ¢ [ﬁ ol
leaving the queue, using the time stamp, the time taken fc z
-

the packet to travel through the queue (packet sojourn time
is found [9]. If a packet takes more thantar get amount

of time, the time is noted. If more than amt er val time (a) Topology (b) Throughput of Link
passes during which all packets that arrive take more than _
target time then CoDel enters into the dropping state an§'9: 2~ ToPology of the network and throughput through lsotéick link.

a packet is subsequently dropped. Additionally, after yver . .
packet drop, a control law is used to set the time for the nextEvaIuann SetupWe use a single-rooted tree topology for

. . i our evaluation as used in [3], [6], [12], [13]. We use 1 Gbps
packet drop according to (see Figure 1): interfaces, round-trip propogation delay of 369 (resulting

S\
)
T 7 -
-/ Queue starts building ™,

Time |
40servers Right after W halves Right before W halves

T T interval 1 in a bandwidth-delay product, or BDP, ¢¢38kB) and a
neat — now it (1) static buffer size of 200 packets unless stated otherwise. W

)) use TCP with SACK in all our simulations. We set the
where T.c,; is the scheduled time for the next drop, anGy;) ot TCP to be 10 ms as suggested by previous studies
Thow IS the current time. Count is the_number of pack_eig]’ [13]. We use the Adaptive RED (ARED) algorithm [11]
droppe.d since entering the current dropping state. Thgbplm for our evaluation, whose implementation is available in ns
drops indicate that there are a lot of packets experiencigg ming, is 25packets and the packet size is set to 1kB.
delays greater than thear get queueing delay; signifying gince ARED tries to maintain an average queue length of
persistence of congestion. CoDel exits the dropping staw (... ° mazyy)/2, we set themaz,, to 51 packets so that
either there are less than MTU bytes in the queue or a pac%% average queue length equals the path BDP, which is the

exits the queue with a delay ,Of less thamr get. The nininum buffer size needed to ensure full link utilizaticd.[
proposed values of arget andi nterval are 5ms and

100 ms, respectively, for wide area networks. 1Any mention of RED later in this paper refers to Adaptive REARED).

For CoDel, we set ar get to a value equal to one RTT inbandwidth-delay produck’ = C' x T"in X RTTs, at which
order to have one BDP worth of buffering at the bottleneckoint, the link becomes fully utilized. Then faf RTTSs, the
We seti nt erval to 2.5xRTT as suggested in [9]. We uselink would remain fully utilized till the queue of siz€' x @
these values to compare the performance of CoDel agaibstlds up. After this, a packet would be dropped and window
RED and DropTail under incast and non-incast scenarios. size would half. To find the number of RTTs this makes up, we
can calculate the number of packets that the window incsease

L L L L L SBOFT T rr 111 1714 by Therefore!
00 |]
£ o/ 1g o1 Wias = K+CxQ=CxT+CxQ=C(T+Q) (@)
g 90/ T f 20 | ThusY is:
> 85 J 4 ° 10}
80 T T T T N N B | 0 T T N N NN N N | RTTB:Wmam_K:C(T+Q)_CXT:CXQ (3)
0 0.10.20.30.40.50.60.70.80.9 1 0 0102030405060.70.809 1
Target (msec) Target (msec) The window size would be halved to give:
(a) Link Utilization (b) Average Queue Length Wnin = maw/2 _ C(T + Q)/2 (4)

Fig. 3. Bottleneck utilization and buffer occupancy as acfiom of target ¢~ 11US the number of RTTs to increase throughput to capacity
[0.01,1] ms. is:

c(r (T -
. _ X = K =Wy = (0 x 1)~ CELQ) _CT Q) g
A. CoDel: Choosing values for target and interval 2 2
To maximize network throughput while keeping low delays! N total number of RTTs is then given by:
a data center operator needs to determine a suitable value fo B _C(Tr+Q)
t ar get andi nt er val . We now analyze the impact of these = Wiz = Winin = 2

parameters and discuss the tradeoffs in the choice of their gpiain jink utilization, we need to take into considerati

values. the fraction of time for which the throughput is at capacitygla
Impact of target: the fraction of time where the throughput is not at full capac
(see Figure 2(b)). Thus, the network utilization is given by

Variable Meaning

Q value of target U= <K+Wmm> < X > +(1) (Y) (6)
N number of long-lived TCP flows 2x K X+Y X+Y
C capacity of bottleneck link . . .
T fime of LRTT which simplifies to
W window size of N synchronized flows
Wmaz window size before packet dropping state starts U = (3T + Q) (T — Q) + (2Q) (7)
Wonin window size after packet dropping state ends 4T T+Q T+ Q
K bandwidth-delay product C' x T . .
X num. RTTs for W to go fromiV,,.;,, to K, full utilization Therefore, forg = 1/2 as in TCP, ifQ = T, thenU =1 and
Y num. RTTs where link is fully utilized, before packet drdp WhenQ = T/2 thenU = 23/24(% 95.83%).
U network utilization Figure 3(a) shows link utilization as a functiontodr get .

TABLE | Observe that utilization increases witlar get until the latter
MEANINGS OF VARIABLES becomes greater thafi = 300 us. This happens because a
single TCP flow (orN synchronized TCP flows) require at
To understand the impact @@ (the value oft ar get) on least one RTT worth of buffer at_ the bo.ttleneck to avoid any
I . throughput loss [2]. Note that increasiricgar get beyond
network utilization, we now present the analysis of CoDel i . S .
00us only increases delay, which impacts the delay experi-

a simplified setting. Consider a network &f long-lived TCP db a but d b .
flows with identical RTTs sharing a single bottleneck link of eed by passing fows utdoes not contribute to_ |_mp_rove_ment
in throughput. WhenQ) = T/2, the average utilization is

_capacny_C. We assume that they .ﬂOWS are synchronized ~96%, which is more than 95.83% as given by Equation 7.
i.e., their window dynamics are in phase. Of course, this

assumption does not always hold true, however, this is thapact of interval: We now consider the impact of varying

case we care about most in data centers, where synchronitteri nt er val . We can think ofi nt er val as determining

flows are common [1]. Due to this, th€ synchronized flows how quickly CoDel reacts to packets having queueing delay

behave like a single flow with a window size f. larger than thet arget . If i nterval is small, then after
When the queueing delay exceddsr get for all passing only a few packets taking more thamar get amount of time,

packets, CoDel starts dropping packets. Just before digppit would start dropping (see Figure 4(a)). ilint er val is

a packet the aggregate window sidé equalsW,,.... After large, then only after a considerable amount of packets have

the sources have responded to the packets loss, the windoiited the buffer with delays greater thaar get would it

size reduces tdV,,;,. The window becomes equal to thdnitiate the dropping state (see Figure 4(b)). Thus, tovatloe

system time to react to congestion, we keepi art er val

Figure 5 shows the bottleneck utilization and the improve-

value of 75Qus i.e., 2.5 times RTT. So from here on, the valument in AFCT with CoDel, RED, and DropTail for flow

of target andi nterval are fixed at 30@s and 75Q:s,

respectively, unless stated otherwise.

sizes of 10kB, 50kB, and 100kB. Observe that TCP achieves
>98% link utilization under all AQMs. However, CoDel im-
proves AFCTs by up to 62% and 35% over DropTail and RED,
respectively. This happens because RED induces a higter los

- ig [OEEM _ B = . rate under incast scenarios (see Figure 8). In particuiar, t

g =L 1% Llr] Ios.s rate with RED |$16%.whereas it is-11% under CoDel.

P wfb— 4§ ooef - This suggests that CoDel is able to accomodate packet bursts

5L 4 - 8:8‘2‘ C 7 better than RED without being overly aggressive in dropping
O 1 1 1 1 1 1 1 1 O 1 11 1 11 1 1 packets.

0.10203040506070809 1

Interval (msec)

(a) Average Queue Length

0.10.20.30.405060.70.809 1

Interval (msec)

(b) Loss Rate

Since CoDel estimates congestion over an interval which is
2.5xRTT, it allows temporary packet bursts into the queue.

It is only under persistent congestion that CoDel becomes
aggressive in dropping packets by reducing the inter-drop
time. RED, on the other hand, starts marking packets when
the average queue length exceedsn,, s, and increasing
the dropping probability linearly as a function of the queue
length. When the queue length exceedsr,...s,, all packets

We now evaluate the performance of CoDel, RED, ange gropped with probability one. This aggressive marking
DropTail under the incast scenrio [13]. Our experimentalge effectively reduces RED to a DropTail buffer when the queue

comprises of forty one machines that are connected to ah;w"@ngth exceedsnazy...n, Which increases the packet loss

with 1 Gbps links. One machine acts as a client, whereas®thglie a5 well the timeouts. Interestingly, note that both RED

act as servers. The client request&B from each server, 5,4 copel are able to maintain an average queue occupancy
and the server responds with the requested data. The clighlass than 10%.

waits until all responses are received before issuing a@moth .)

query. We always have one long-lived TCP flow active in the 1) Understanding Packet Drop Behavior Under Incast:
background; a common case in data centers [3]. We repeat thi€ase of incast, a large number of packet drops can occur
pattern several times and report the average results. Mereodue to buffer overflows when the number of synchronized
we also report results for average request sigesf 10 kB, packet arrivals exceed the buffer size. Thus, it is impdrtan

Fig. 4. Impact ofinterval on queue length and loss rate.

B. Incast Scenario - Varying Request Sizes

50kB and 100kB.

T T
CoDel Xx1

to isolate the impact of packet drops due to the AQM and
those due to buffer overflows. Figure 8(a) shows packet drops
as a function of time for CoDel and RED under the incast

102 f e E 60 |- obel B scenario. In this scenario a long flow is started at time0 s

s I 1% oL] and 40 synchronized flows are initiated at tihe= 100 ms.

g 9% 1§ 3o0fF g B S Observe that RED introduces significantly more packet drops

> 3‘2‘ i 1 2 ig [K o %] than CoDel. When incast occurs, it suddenly increases the
C) E oL . ¢ gueue length causing large number of packet drops. RED’s

10 50 100

Average Filesize (kB)

gueue length quicly reachesax,,.s;, and thus drops every
packet until the queue length decreases to betawt, ...

On the other hand, CoDel would only start dropping once
the queueing delay has been greater thart teget for an

i nt erval amount of time. CoDel reduces the inter-drop time
as the more congeestion builds up, which helps in contgllin
the queue length.

Average Filesize (kB)

(a) Link Utilization (b) Improvement in AFCT

Fig. 5. Bottleneck utilization and the improvement in AFQWér DropTail)
for CoDel, RED, and DropTail under the incast scenario wihying request
sizes. One long-lived TCP flow is active at all times.

T 80 ; . . 2) Understanding Timeouts Under Incagtigure 7 shows
%0 - CRRR =2 1 70 K Copel = - I : .
SR Y 12 eof Dropfal the number of flows in timeouts under the incast scenario.
£ ol H g B] Observe that a few milliseconds after 100 ms flows start going
g 30 | . E 30 | . 8 into timeouts. Due to the more aggressive dropping behaviou
ol 5{}3 Rjﬁ Rjﬁ I ﬁ) &] of RED, there are more flows in timeouts for RED as compared
O 0 s 100 O 0 s 100 to CoDel. Later at 150 ms as both RED and CoDel have similar

Average Filesize (kB)

(a) Queue occupancy

Average Filesize (kB)

(b) Packet loss rate

dropping behavior due to having stabilized (see Figure)8(a)
it can be noted that they have a similar number of flows in
timeouts. Due to more flows being in timeouts for RED than

Fig. 6. Queue occupancy and packet loss rate for CoDel, RE@DaopTail
under incast with 40 senders (each generating a flow of sipkBp We
maintain one long-lived TCP flow in the background.

for CoDel soon after 100 ms, leads to larger AFCT for RED
compared to CoDel.

101

" copdl —— 25 | "cobel B
45 10051 ool oo 4 RED -
CoDe! S 2 20 . DropTail --x-- -
&= 40 [red - : w00f ... A% R
5 35+ - Poespo——— 4§ BF an
3 30 | - 8 99 . 0L
) | _ 98.5 I I I . I I
S 25 8 16 32 64 128 8 16 32 64 128
= 2 O —] Number of senders Number of senders
c
0 15 | 7 (a) Link Utilization (b) Improvement in AFCT
g 10 .
[5 = _ Fig. 9. Bottleneck utlization and AFCT for TCP with CoDel, BREand
DropTail under the incast scenario. 1 long lived TCP flows waetive in the

0 b= background.
0 50 100 150 200 250 300

100 F " copel' —— T 18 " Copel ——
i i i =~ DropTal - 16 I Drope - x-- 7
Simulation time (msec) g 80 p . poemal i 1 g 14t P -
& 60 4 g 12t -
e ok e 1w} A
Fig. 7. The number of TCP flows in timeouts as a function of tinmeler) g 8fp E
the incast scenario. 0F T 6 BRSO,
0 1 1 1 /g S | e i 1
700 8 16 32 64 128 8 16 32 64 128
= 600 -coDCe#Peo'{e/}%‘f, fllf ' 1 & 600} Cég%' lﬁ ' ' L Number of senders Number of senders
g 500 e 3 500 o] (a) Queue occupanc (b) Packet loss rate
g 400 B g 400 f 4 pancy
§ 300 b 48 300} L . .
£ 200 4 & 200} fl f/—' i Fig. 10. Queue occupancy and packet loss rate with CoDel, , R
€ 100 o wwoeo 4 & 100 |-~ J DropTail under incast with 8, 16, 32, 64, 128 senders (eaderg¢ing a flow
0 L T— 0 L T— of size 1000 kB). We maintain 1 long-lived TCP flow in the backgqd.
0 50 100 150 200 250 0 50 100 150 200 250
Simulation time (msec) Simulation time (msec)

_ distribution as done in [6]. Each simulation is run for 3 &.(i.
(a) Incast (b) Non-incast 10000RTTS).
Fig. 8. Packet drops under the incast and non-incast sosnasia functon ~ Figure 11 shows the link utilization and improvement in
of time. Note that the figure shows packet drops due to the A@Msvell AFCT under the non-incast scenario. Observe that across a
ﬁf]dde‘jet;g ﬁiﬁ?{nﬁﬁffﬁi;ﬁge&?‘éﬁ{ t?gr%efrbougetrhgvﬁi?f negligble - ange of offered loads, CoDel has better link utilizatiop (@
6%) compared to RED. On the other hand, DropTail maintains
~100% link utilization. CoDel improves the AFCT by up to
63% over DropTail and up to 7% over RED (except when the
To achieve benefits of horizontal scalability, data cent&sad is 909%) due to lower packet loss rates.
operators often partiation tasks into larger number of work 1) Understanding Packet Drop Behavior Under Non-Incast
machines. To study such settings, we now vary the numberSienarios: Figure 8(b) shows packets with CoDel and RED
simultaneous senders from 8 to 128. The total request sizeuigler the non-incast scenario as a function of time. Observe
fixed at 1 MB, thus each sender sends 1 MEBmount of data, that RED consistently drops more packets compared to CoDel.
wheren is the total number of senders. Observe that RED dogs particular, RED starts dropping packets when the queue
not handle bursty traffic as well as CoDel or DropTail. CoDédéngth exceeds 25. Thus every time a short flow arrives,
significantly improves AFCT by upto 65% and 85% compared starts immediately dropping probabilistically at 25 gee
to RED and DropTail, respectively, as shown in Figure 9). Wength and then as queue length reaches 51 it drops all gacket
can see that CoDel and DropTail have larger queue lengihdiscriminately. While CoDel will start dropping with iet-
compared to RED, thus allowing more packets to come ad¢op times at queue lengths of 38 and greater, i.e. it drops
handle bursts better. steadily. Therefore, we can see in Figure 8(b) as a short flow
arrives RED would behave more aggressively than CoDel in
maintaining queue lengths, as a result we can see that the
We now consider scenarios in which short flows (corretifference in drops also increases as time passes and short
sponding to query and other delay-sensitive traffic in daftows keep arriving.
centers [3]) arrive at random times (with exponentially-dis
tributed inter-arrival times) while a single long-lived PC
flow is activé. We consider a range of offered load due to Several AQMs have been proposed in the past to address the
short flows and study the resulting performance. Flow sizé8itations of DropTail and RED queues [9]. REM [8] replaces
are drawn from the interval [2kB, 98kB] using a uniforrRED’s linear marking with an exponential one. It decouples
the congestion measure from the performance measure by

C. Incast Scenario - Varying Number of Senders

D. Non-Incast Scenario

IV. RELATED WORK

2Note that one long-lived TCP flow represents the 50th peiteetraffic
multiplexing in data center networks [3]. 3In this case, CoDel becomes more aggressive then RED.

< 70 T T T T 90 T T T T 14 T T
105 S eofm copel & g0 ' cagt=' 4 | g g
g 100 F ; E 50 L)3 \71‘ < | g 60: ropTail - : g 10 L ropTail == i
§E os| R il s £ s0p 1% ¢]
g 1§ 30 R I K ¢ 40F oo 1 % 6 ¢
5 9r 15 20 bR S R g 3o o A4 & 4L R K
85 - e koK B4 8 1o | KO R © B Cpp B R 2 b @E& 1
80 L K (M DI E 0 ! S P 0 Rt pg<i B W (0 0 PO B B G [t
90

10 30 50 70
Offered Load (%)

30 50 70 90
Offered Load (%)

(a) Link Utilization (b) Improvement in AFCT

Fig. 11.
flow in the background under the non-incast scenario.

capturing congestion in a dynamic variable caligte, which [2]
depends on the number of active users and bandwidth usa%?.
The Proportional Integral (PI) makes use of control theory t
control the queues. However, Pl can result in unnecessarily
high loss rates in case of bursty traffic, which raises cancerl
of its suitability under incast scenarios. CHOKe [14] imyes
the fairness of RED through preferential dropping of pasket[s]
based on flow classification, which helps in fairly penaligin
dominating flows. AVQ [15] tries to keep the queue Iength§6]
small by maintaining virtual queues at the switches. 7
BLUE [16] aims at reducing loss rate and queue length

oscillations by using a heuristic approach. However, sgtti (g
the parameters of BLUE appropriately under varying traffic
patterns can be a challenge. SRED [17] is similar to RED®!
but it estimates congestion based on current queue length ag
diversity of recently active flows also called tzembielist.
FRED is a variant of RED that tracks congestion by measurinlq
bandwidth utilization of each flow. It then drops each rov{/]
in proportion to its bandwidth utilization. All these AQMs,
however, have been analyzed under wide-area networkshwHr!
are significantly different than data center networks. Hefitc 13,
is unclear how they perform under data center traffic scenari
AQMs that build on RED will likely need significant parameteh‘q
tuning under different scenarios. Theo-knobs nature of
CoDel coupled with its self adapting ability under diffeten
traffic patterns makes it easier for it to pave its way into thé!
data center switches.

[16]

V. CONCLUSION

In this paper, we studied the effectiveness of CoDel in7]
meeting the requirements of large-scale data center @pplic
tions. We find that CoDel accomodates packet bursts better
than existing AQMs like RED, thereby considerably imprayin
completion times in common data center traffic scenariob suc
as incast. Moreover, it also improves completion times unde
non-incast scenarios where the traffic comprises of a mix
of short and long flows. These results suggest that CoDel
can be effective in data centers. In the future, we plan to
test the performance of CoDel over a real testbed and under
heterogeneous data center applications.

REFERENCES

[1] D. Abts and B. Felderman, “A guided tour of data-centetwmeking,”
Commun. ACMvol. 55, no. 6, pp. 44-51, Jun. 2012.

10 30 50 70 90
Offered Load (%)

10 30 50 70
Offered Load (%)

(c) Queue occupancy (d) Packet loss rate

Link utilization, improvement in AFCT, average geeoccupancy and packet loss rate under CoDel, RED, and Bitopith one long-lived TCP

G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing teubuffers,”
in SIGCOMM’'04

M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Pakel,Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp gfctm
SIGCOMM'10

J. Dean and S. Ghemawat, “Mapreduce: Simplified datagsging on
large clusters,Communications of the ACMol. 51, no. 1, pp. 107-113,
2008.

B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadlineagavdatacen-
ter tcp (d2tcp),” iINSIGCOMM'12

C. Wilson, H. Ballani, T. Karagiannis, and A. RowstrorBétter never
than late: Meeting deadlines in datacenter networks3IBCOMM'11
S. Floyd and V. Jacobson, “Random early detection gatevi@ar conges-
tion avoidance,” inNlEEE/ACM Transactions on Networking, 1(4):397-
413 Aug 1993.

S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queumanage-
ment,” in IEEE Network, 15(3):48-53May 2001.

K. Nichols and V. Jacobson, “Controlling queue dela@{ieue vol. 10,
no. 5, pp. 20:20-20:34, May 2012.

A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtag, S. N. IsmaiM. S. Igbal,
and B. Khan, “Minimizing Flow Completion Times in Data Cerstg
in INFOCOM’13

S. Floyd, R. Gummadi, and S. Shenker, “Adaptive red: Agoathm
for increasing the robustness of red’s active queue managghiech.
Rep., 2001.

H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast castgm control
for tcp in data center networks,” iBo-Next'10

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. ekseh,
G. Ganger, G. Gibson, and B. Mueller, “Safe and effective-§reened
tcp retransmissions for datacenter communication SiGCOMM’09
R. Pan, B. Prabhakar, and K. Psounis, “Choke - a stateleive queue
management scheme for approximating fair bandwidth dilmea in
INFOCOM'00.

S. Kunniyur and R. Srikant, “Analysis and design of anapgti/e
virtual queue (AVQ) algorithm for active queue manageniantACM
SIGCOMM Aug 2001.

W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “Thaekctive
queue management algorithmiEEE/ACM Trans. Netwyvol. 10, no. 4,
pp. 513-528, Aug. 2002.

L. W. Teunis Ott Lakshman, T. V. Lakshman, “Sred: Stakill red,” pp.
1346-1355, 1999.

