
On the Effectiveness of CoDel in Data Centers
Saad Naveed Ismail, Hasnain Ali Pirzada, Ihsan Ayyub Qazi

Computer Science Department, LUMS
Email: {14100055,15100061,ihsan.qazi}@lums.edu.pk

Abstract—Large-scale data center applications like web search,
social networking, and recommendation systems simultaneously
require high throughput for long flows, small completion times
for short flows, and high burst tolerance. However, meeting
these requirements is a challenging task. First, long TCP flows
maintain high buffer occupancy, which increases the completion
time of short flows. Second, many data center applications are
architected to follow the Partition-Aggregate workflow pattern,
which gives rise to synchronized flows. In the presence of long
flows, this significantly degrades the performance of short flows.
CoDel is a promising active queue management scheme proposed
for wide area networks to addressbufferbloat; a condition in
which excessive buffering leads to high latency. In this paper, we
rigorously evaluate the effectiveness of CoDel in data center envi-
ronments. Our results show that CoDel significantly outperforms
RED and DropTail under both incast and non-incast scenarios
due to its ability to better handle bursty traffic. In particu lar, it
reduces average flow completion times by up to 35% and 65%
compared to RED and DropTail, respectively. We also suggest
ways to configure CoDel for data center environments.

I. I NTRODUCTION

Large-scale online services such as web search, social
networking, advertising systems, and recommendation systems
generate a mix of short and long flows and require three things
from the underlying data center network: high throughput
for long flows, low latency for short flows, and high burst
tolerance [1].

However, meeting these requirements is a challenging task.
First, long-lived TCP flows deliberately fill buffers [2]. This
causes the average queue length to increase which in turn
increases the completion time of short flows [3]. Second, many
data center applications (e.g., web search, MapReduce) have
workflow patterns that lead to many-to-one communication
[1], [4]. For example, under thePartition/Aggregateworkflow
pattern, a user request is partitioned amongst several worker
nodes within the data center and the responses from these
nodes are then combined by an aggregator node before a
response is sent to the user. Such workflows result in a
large number of short flows that arrive synchronously at a
switch leading to incast, which significantly degrades system
throughput and increases the completion time of short flows
[5], [6].

Active queue management (AQM) schemes aim to achieve
high throughput and low delay by pro-actively mark-
ing/dropping packets at the routers [7], [8]. However, existing
AQM schemes, such as Random Early Detection (RED) [7]
and Random Exponential Marking (REM) [8], do not work
well when the traffic is bursty and there is low statistical

multiplexing, both of which hold in data center environments
(see [3] and the references therein).

Controlled Delay Management (CoDel) [9] is an AQM
scheme, proposed for wide area networks, that addresses the
bufferbloatproblem; a condition in which excessive buffering
in routers and switches leads to high latency. CoDel aims to
eliminate standing queues that introduce large delays but do
not contribute to throughput improvement. A key benefit of
CoDel over AQMs like RED is the lack of need to adapt
parameters based on changing traffic and network conditions.
This paper studies the effectiveness of CoDel in meeting the
requirements of data center applications.

Towards this end, we conduct a rigorous evaluation of
CoDel under typical data center settings such as incast and
non-incast scenarios [6], [10] and compare results with RED
and DropTail queues. Our results show that CoDel outperforms
RED and DropTail under both incast and non-incast scenarios
in terms of average flow completion times (AFCT) while main-
taining high link utilization. In particular, it reduces AFCTs
by up to 35% and 65% compared to RED and DropTail,
respectively. This happens for two key reasons: (a) CoDel
accommodates packet bursts better than RED and (b) CoDel
adaptively adjusts the packet dropping rate by reducing the
time between drops based on the persistence of congestion.
The first characteristic helps CoDel in accommodating large
packet bursts that arrive under incast without reacting too
aggressively to instantaneous queue buildups. The second
characteristic, ensures that drops occur only when congestion
is persistent, which helps in ensuring high throughput as well
as in eliminating any extra delays. In addition to our insights,
we also suggest ways to configure CoDel for data center
environments. To our knowledge, this is the first work which
systematically analyzes the performance of CoDel in data
centers.

The rest of the paper is organized as follows. We dis-
cuss characteristics of data center traffic and describe AQM
schemes in section II. We analyze the performance of CoDel
in section III. The related work is discussed in section IV. We
offer concluding remarks in section V.

II. BACKGROUND: DATA CENTER TRAFFIC AND AQMS

In this section, we first discuss the nature of data center
traffic and the requirements of cloud applications from the
underlying data center network. We then describe CoDel and
the RED AQM.

A. Data Center Traffic

User facing and large-scale online applications like web
search, recommendation systems, and social networks as well
as data processing frameworks like MapReduce [4] achieve
horizontal scalability by partitioning a task of responding to
users amongst several machines (possibly involving multiple
layers) [1].

Such a Parition/Aggregateapplication structure of data
center applications often results in bursts of concurrent flows
that can severely degrade network throughput, leading to the
incast impairment [3]. Moreover, the presence of long-lived
TCP flows, which keep high buffer occupancy increases the
response times of latency sensitive flows. These issues leadto
three key application requirements from the underlying data
center network fabric. (1) High throughput for long flows, (2)
small completion times for short flows, and (3) high burst
tolerance to handle bursts under incast.

B. Active Queue Management Schemes

CoDel: CoDel [9] is a delay based AQM scheme that
aims to keep low delays while maintaining high network
throughput. Many prior AQMs, such as RED and REM, that
aim for a similar goal require adaptive tuning of parameters
based on network characteristics and traffic conditions, which
can change over time [11]. CoDel, on the other hand, does not
require tuning of parameters and can adapt to dynamically
changing link rates and round-trip delays. CoDel maintains
two constants namely,target and interval. target
refers to the acceptable queueing delay andinterval is the
time over which congestion is measured and is in the order of
a worst-case RTT of connections.

The basic mode of operation of CoDel is as follows: Every
packet that enters the queue is given a time stamp and on
leaving the queue, using the time stamp, the time taken for
the packet to travel through the queue (packet sojourn time)
is found [9]. If a packet takes more than atarget amount
of time, the time is noted. If more than aninterval time
passes during which all packets that arrive take more than
target time then CoDel enters into the dropping state and
a packet is subsequently dropped. Additionally, after every
packet drop, a control law is used to set the time for the next
packet drop according to (see Figure 1):

Tnext = Tnow +
interval√
count

, (1)

where Tnext is the scheduled time for the next drop, and
Tnow is the current time. Count is the number of packets
dropped since entering the current dropping state. Thus, higher
drops indicate that there are a lot of packets experiencing
delays greater than thetarget queueing delay; signifying
persistence of congestion. CoDel exits the dropping state when
either there are less than MTU bytes in the queue or a packet
exits the queue with a delay of less thantarget. The
proposed values oftarget and interval are 5 ms and
100 ms, respectively, for wide area networks.

Queue Length

minth maxth

Queue Length

size

Inter-Dropping Times

D
ro

p
 P

ro
b

a
b

il
it

y

D
ro

p
 P

ro
b

a
b

il
it

y

maxp

1 1 1

N
u

m
b

e
r

o
f

D
ro

p
s

0

DropTail RED CoDel

0 0

Fig. 1. The figures shows (a) drop probability of RED as a function of the
queue length, (b) drop probability of DropTail as a functionof queue length,
and (c) inter-dropping times with CoDel under persistent congestion.

RED: The RED AQM probabilistically drops/marks packets
when the average queue length exceeds a minimum threshold
minth. The dropping probability increases linearly from zero
at minth to maxp at the thresholdmaxth. When the aver-
age queue length exceeds this second threshold (maxth), all
packets are dropped with probability 1. The dropping pattern
of the three queueing schemes, DropTail, RED and CoDel, is
visualized in Figure 1.

III. C ODEL IN DATA CENTERS

We now analyze the performance of CoDel in data center
environments. First, we study impact oftarget on network
utilization and average queue length with the help of a
model and ns2 simulations. We then carry out a performance
evaluation of CoDel with RED and DropTail queues under
incast and non-incast scenarios using ns-2 simulations.

(a) Topology (b) Throughput of Link

Fig. 2. Topology of the network and throughput through bottleneck link.

Evaluation Setup: We use a single-rooted tree topology for
our evaluation as used in [3], [6], [12], [13]. We use 1 Gbps
interfaces, round-trip propogation delay of 300µs (resulting
in a bandwidth-delay product, or BDP, of≈38 kB) and a
static buffer size of 200 packets unless stated otherwise. We
use TCP with SACK in all our simulations. We set the
RTOmin of TCP to be 10 ms as suggested by previous studies
[3], [13]. We use the Adaptive RED (ARED) algorithm [11]
for our evaluation, whose implementation is available in ns-
21. minth is 25 packets and the packet size is set to 1 kB.
Since ARED tries to maintain an average queue length of
(minth +maxth)/2, we set themaxth to 51 packets so that
the average queue length equals the path BDP, which is the
minimum buffer size needed to ensure full link utilization [2].

1Any mention of RED later in this paper refers to Adaptive RED (ARED).

For CoDel, we settarget to a value equal to one RTT in
order to have one BDP worth of buffering at the bottleneck.
We setinterval to 2.5×RTT as suggested in [9]. We use
these values to compare the performance of CoDel against
RED and DropTail under incast and non-incast scenarios.

 80

 85

 90

 95

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

(%
)

Target (msec)

(a) Link Utilization

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ue

ue
 (

%
 B

uf
)

Target (msec)

(b) Average Queue Length

Fig. 3. Bottleneck utilization and buffer occupancy as a function of target ∈
[0.01, 1]ms.

A. CoDel: Choosing values for target and interval

To maximize network throughput while keeping low delays,
a data center operator needs to determine a suitable value for
target andinterval. We now analyze the impact of these
parameters and discuss the tradeoffs in the choice of their
values.

Impact of target:

Variable Meaning
Q value of target
N number of long-lived TCP flows
C capacity of bottleneck link
T time of 1 RTT
W window size ofN synchronized flows

Wmax window size before packet dropping state starts
Wmin window size after packet dropping state ends

K bandwidth-delay product= C × T

X num. RTTs for W to go fromWmin to K, full utilization
Y num. RTTs where link is fully utilized, before packet drop
U network utilization

TABLE I
MEANINGS OF VARIABLES

To understand the impact ofQ (the value oftarget) on
network utilization, we now present the analysis of CoDel in
a simplified setting. Consider a network ofN long-lived TCP
flows with identical RTTs sharing a single bottleneck link of
capacityC. We assume that theN flows are synchronized
i.e., their window dynamics are in phase. Of course, this
assumption does not always hold true, however, this is the
case we care about most in data centers, where synchronized
flows are common [1]. Due to this, theN synchronized flows
behave like a single flow with a window size ofW .

When the queueing delay exceedstarget for all passing
packets, CoDel starts dropping packets. Just before dropping
a packet the aggregate window sizeW equalsWmax. After
the sources have responded to the packets loss, the window
size reduces toWmin. The window becomes equal to the

bandwidth-delay productK = C × T in X RTTs, at which
point, the link becomes fully utilized. Then forY RTTs, the
link would remain fully utilized till the queue of sizeC ×Q
builds up. After this, a packet would be dropped and window
size would half. To find the number of RTTs this makes up, we
can calculate the number of packets that the window increases
by. Therefore,

Wmax = K + C ×Q = C × T + C ×Q = C(T +Q) (2)

ThusY is:

RTTB = Wmax −K = C(T +Q)− C × T = C ×Q (3)

The window size would be halved to give:

Wmin = Wmax/2 = C(T +Q)/2 (4)

Thus the number of RTTs to increase throughput to capacity
is:

X = K −Wmin = (C ×T)− C(T +Q)

2
=

C(T −Q)

2
(5)

The total number of RTTs is then given by:

= Wmax −Wmin =
C(T +Q)

2

To obtain link utilization, we need to take into consideration
the fraction of time for which the throughput is at capacity and
the fraction of time where the throughput is not at full capacity
(see Figure 2(b)). Thus, the network utilization is given by:

U =

(

K +Wmin

2×K

)(

X

X + Y

)

+ (1)

(

Y

X + Y

)

(6)

which simplifies to

U =

(

3T +Q

4T

)(

T −Q

T +Q

)

+

(

2Q

T +Q

)

(7)

Therefore, forβ = 1/2 as in TCP, ifQ = T , thenU = 1 and
whenQ = T/2 thenU = 23/24(≈ 95.83%).

Figure 3(a) shows link utilization as a function oftarget.
Observe that utilization increases withtarget until the latter
becomes greater thanT = 300µs. This happens because a
single TCP flow (orN synchronized TCP flows) require at
least one RTT worth of buffer at the bottleneck to avoid any
throughput loss [2]. Note that increasingtarget beyond
300µs only increases delay, which impacts the delay experi-
enced by passing flows but does not contribute to improvement
in throughput. WhenQ = T/2, the average utilization is
∼96%, which is more than 95.83% as given by Equation 7.

Impact of interval : We now consider the impact of varying
the interval. We can think ofinterval as determining
how quickly CoDel reacts to packets having queueing delay
larger than thetarget. If interval is small, then after
only a few packets taking more thantarget amount of time,
it would start dropping (see Figure 4(a)). Ifinterval is
large, then only after a considerable amount of packets have
exited the buffer with delays greater thantarget would it
initiate the dropping state (see Figure 4(b)). Thus, to allow the

system time to react to congestion, we keep aninterval
value of 750µs i.e., 2.5 times RTT. So from here on, the value
of target andinterval are fixed at 300µs and 750µs,
respectively, unless stated otherwise.

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ue

ue
 (

%
 B

uf
)

Interval (msec)

target=0.3
target=0.4
target=0.5

(a) Average Queue Length

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
st

 R
at

e
(%

)

Interval (msec)

target=0.3
target=0.4
target=0.5

(b) Loss Rate

Fig. 4. Impact ofinterval on queue length and loss rate.

B. Incast Scenario - Varying Request Sizes

We now evaluate the performance of CoDel, RED, and
DropTail under the incast scenrio [13]. Our experimental setup
comprises of forty one machines that are connected to a switch
with 1 Gbps links. One machine acts as a client, whereas others
act as servers. The client requestsS kB from each server,
and the server responds with the requested data. The client
waits until all responses are received before issuing another
query. We always have one long-lived TCP flow active in the
background; a common case in data centers [3]. We repeat this
pattern several times and report the average results. Moreover,
we also report results for average request sizesS of 10 kB,
50 kB and 100 kB.

 90
 92
 94
 96
 98

 100
 102
 104

 10 50 100

U
til

iz
at

io
n

(%
)

Average Filesize (kB)

CoDel
RED

DropTail

(a) Link Utilization

 0
 10
 20
 30
 40
 50
 60
 70

 10 50 100

Im
pr

ov
em

en
t i

n
A

F
C

T
 (

%
)

Average Filesize (kB)

CoDel
RED

(b) Improvement in AFCT

Fig. 5. Bottleneck utilization and the improvement in AFCT (over DropTail)
for CoDel, RED, and DropTail under the incast scenario with varying request
sizes. One long-lived TCP flow is active at all times.

 0
 10

 30

 50

 70

 90

 10 50 100

Q
ue

ue
 (

%
 B

uf
)

Average Filesize (kB)

CoDel
RED

DropTail

(a) Queue occupancy

 0
 10
 20
 30
 40
 50
 60
 70
 80

 10 50 100

Lo
ss

 R
at

e
(%

)

Average Filesize (kB)

CoDel
RED

DropTail

(b) Packet loss rate

Fig. 6. Queue occupancy and packet loss rate for CoDel, RED, and DropTail
under incast with 40 senders (each generating a flow of size 100 kB). We
maintain one long-lived TCP flow in the background.

Figure 5 shows the bottleneck utilization and the improve-
ment in AFCT with CoDel, RED, and DropTail for flow
sizes of 10 kB, 50 kB, and 100 kB. Observe that TCP achieves
>98% link utilization under all AQMs. However, CoDel im-
proves AFCTs by up to 62% and 35% over DropTail and RED,
respectively. This happens because RED induces a higher loss
rate under incast scenarios (see Figure 8). In particular, the
loss rate with RED is∼16% whereas it is∼11% under CoDel.
This suggests that CoDel is able to accomodate packet bursts
better than RED without being overly aggressive in dropping
packets.

Since CoDel estimates congestion over an interval which is
2.5×RTT, it allows temporary packet bursts into the queue.
It is only under persistent congestion that CoDel becomes
aggressive in dropping packets by reducing the inter-drop
time. RED, on the other hand, starts marking packets when
the average queue length exceedsminthresh and increasing
the dropping probability linearly as a function of the queue
length. When the queue length exceedsmaxthresh, all packets
are dropped with probability one. This aggressive marking
effectively reduces RED to a DropTail buffer when the queue
length exceedsmaxthresh, which increases the packet loss
rate as well the timeouts. Interestingly, note that both RED
and CoDel are able to maintain an average queue occupancy
of less than 10%.

1) Understanding Packet Drop Behavior Under Incast:
In case of incast, a large number of packet drops can occur
due to buffer overflows when the number of synchronized
packet arrivals exceed the buffer size. Thus, it is important
to isolate the impact of packet drops due to the AQM and
those due to buffer overflows. Figure 8(a) shows packet drops
as a function of time for CoDel and RED under the incast
scenario. In this scenario a long flow is started at timet = 0 s
and 40 synchronized flows are initiated at timet = 100ms.
Observe that RED introduces significantly more packet drops
than CoDel. When incast occurs, it suddenly increases the
queue length causing large number of packet drops. RED’s
queue length quicly reachesmaxthresh and thus drops every
packet until the queue length decreases to belowmaxthresh.
On the other hand, CoDel would only start dropping once
the queueing delay has been greater than thetarget for an
interval amount of time. CoDel reduces the inter-drop time
as the more congeestion builds up, which helps in controlling
the queue length.

2) Understanding Timeouts Under Incast:Figure 7 shows
the number of flows in timeouts under the incast scenario.
Observe that a few milliseconds after 100 ms flows start going
into timeouts. Due to the more aggressive dropping behaviour
of RED, there are more flows in timeouts for RED as compared
to CoDel. Later at 150 ms as both RED and CoDel have similar
dropping behavior due to having stabilized (see Figure 8(a)),
it can be noted that they have a similar number of flows in
timeouts. Due to more flows being in timeouts for RED than
for CoDel soon after 100 ms, leads to larger AFCT for RED
compared to CoDel.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50 100 150 200 250 300

F
lo

w
s

in
 ti

m
eo

ut
s

(#
)

Simulation time (msec)

CoDel
RED

Fig. 7. The number of TCP flows in timeouts as a function of timeunder
the incast scenario.

 0
 100
 200
 300
 400
 500
 600

 0 50 100 150 200 250

P
ac

ke
t D

ro
pp

ed
 (

#)

Simulation time (msec)

CoDel - AQM
CoDel - Overflow

RED - AQM
RED - Overflow

(a) Incast

 0
 100
 200
 300
 400
 500
 600
 700

 0 50 100 150 200 250

P
ac

ke
t D

ro
pp

ed
 (

#)

Simulation time (msec)

CoDel
RED

(b) Non-incast

Fig. 8. Packet drops under the incast and non-incast scenarios as a function
of time. Note that the figure shows packet drops due to the AQMsas well
as due to buffer overflows under incast. Since buffer overflows are negligible
under the non-incast scenario, we omit them from the figure.

C. Incast Scenario - Varying Number of Senders

To achieve benefits of horizontal scalability, data center
operators often partiation tasks into larger number of worker
machines. To study such settings, we now vary the number of
simultaneous senders from 8 to 128. The total request size is
fixed at 1 MB, thus each sender sends 1 MB/n amount of data,
wheren is the total number of senders. Observe that RED does
not handle bursty traffic as well as CoDel or DropTail. CoDel
significantly improves AFCT by upto 65% and 85% compared
to RED and DropTail, respectively, as shown in Figure 9). We
can see that CoDel and DropTail have larger queue lengths
compared to RED, thus allowing more packets to come and
handle bursts better.

D. Non-Incast Scenario

We now consider scenarios in which short flows (corre-
sponding to query and other delay-sensitive traffic in data
centers [3]) arrive at random times (with exponentially dis-
tributed inter-arrival times) while a single long-lived TCP
flow is active2. We consider a range of offered load due to
short flows and study the resulting performance. Flow sizes
are drawn from the interval [2 kB, 98 kB] using a uniform

2Note that one long-lived TCP flow represents the 50th percentile traffic
multiplexing in data center networks [3].

 98.5

 99

 99.5

 100

 100.5

 101

 8 16 32 64 128

U
til

iz
at

io
n

(%
)

Number of senders

CoDel
RED

DropTail

(a) Link Utilization

 10

 15

 20

 25

 8 16 32 64 128

A
F

C
T

 (
m

se
c)

Number of senders

CoDel
RED

DropTail

(b) Improvement in AFCT

Fig. 9. Bottleneck utlization and AFCT for TCP with CoDel, RED, and
DropTail under the incast scenario. 1 long lived TCP flows wasactive in the
background.

 0

 20

 40

 60

 80

 100

 8 16 32 64 128

Q
ue

ue
 (

%
 B

uf
)

Number of senders

CoDel
RED

DropTail

(a) Queue occupancy

 4
 6
 8

 10
 12
 14
 16
 18

 8 16 32 64 128

Lo
ss

 R
at

e
(%

)

Number of senders

CoDel
RED

DropTail

(b) Packet loss rate

Fig. 10. Queue occupancy and packet loss rate with CoDel, RED, and
DropTail under incast with 8, 16, 32, 64, 128 senders (each generating a flow
of size 1000 kB). We maintain 1 long-lived TCP flow in the background.

distribution as done in [6]. Each simulation is run for 3 s (i.e.,
10000RTTs).

Figure 11 shows the link utilization and improvement in
AFCT under the non-incast scenario. Observe that across a
range of offered loads, CoDel has better link utilization (up to
6%) compared to RED. On the other hand, DropTail maintains
∼100% link utilization. CoDel improves the AFCT by up to
63% over DropTail and up to 7% over RED (except when the
load is 90%3) due to lower packet loss rates.

1) Understanding Packet Drop Behavior Under Non-Incast
Scenarios:Figure 8(b) shows packets with CoDel and RED
under the non-incast scenario as a function of time. Observe
that RED consistently drops more packets compared to CoDel.
In particular, RED starts dropping packets when the queue
length exceeds 25. Thus every time a short flow arrives,
it starts immediately dropping probabilistically at 25 queue
length and then as queue length reaches 51 it drops all packets
indiscriminately. While CoDel will start dropping with inter-
drop times at queue lengths of 38 and greater, i.e. it drops
steadily. Therefore, we can see in Figure 8(b) as a short flow
arrives RED would behave more aggressively than CoDel in
maintaining queue lengths, as a result we can see that the
difference in drops also increases as time passes and short
flows keep arriving.

IV. RELATED WORK

Several AQMs have been proposed in the past to address the
limitations of DropTail and RED queues [9]. REM [8] replaces
RED’s linear marking with an exponential one. It decouples
the congestion measure from the performance measure by

3In this case, CoDel becomes more aggressive then RED.

 80

 85

 90

 95

 100

 105

 10 30 50 70 90

U
til

iz
at

io
n

(%
)

Offered Load (%)

CoDel
RED

DropTail

(a) Link Utilization

 0
 10
 20
 30
 40
 50
 60
 70

 10 30 50 70 90

Im
pr

ov
em

en
t i

n
A

F
C

T
 (

%
)

Offered Load (%)

CoDel
RED

(b) Improvement in AFCT

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 10 30 50 70 90

Q
ue

ue
 (

%
 B

uf
)

Offered Load (%)

CoDel
RED

DropTail

(c) Queue occupancy

 0
 2
 4
 6
 8

 10
 12
 14

 10 30 50 70 90

Lo
ss

 R
at

e
(%

)

Offered Load (%)

CoDel
RED

DropTail

(d) Packet loss rate

Fig. 11. Link utilization, improvement in AFCT, average queue occupancy and packet loss rate under CoDel, RED, and DropTail with one long-lived TCP
flow in the background under the non-incast scenario.

capturing congestion in a dynamic variable calledprice, which
depends on the number of active users and bandwidth usage.
The Proportional Integral (PI) makes use of control theory to
control the queues. However, PI can result in unnecessarily
high loss rates in case of bursty traffic, which raises concern
of its suitability under incast scenarios. CHOKe [14] improves
the fairness of RED through preferential dropping of packets
based on flow classification, which helps in fairly penalizing
dominating flows. AVQ [15] tries to keep the queue lengths
small by maintaining virtual queues at the switches.

BLUE [16] aims at reducing loss rate and queue length
oscillations by using a heuristic approach. However, setting
the parameters of BLUE appropriately under varying traffic
patterns can be a challenge. SRED [17] is similar to RED
but it estimates congestion based on current queue length and
diversity of recently active flows also called thezombielist.
FRED is a variant of RED that tracks congestion by measuring
bandwidth utilization of each flow. It then drops each flow
in proportion to its bandwidth utilization. All these AQMs,
however, have been analyzed under wide-area networks, which
are significantly different than data center networks. Hence, it
is unclear how they perform under data center traffic scenarios.
AQMs that build on RED will likely need significant parameter
tuning under different scenarios. Theno-knobs nature of
CoDel coupled with its self adapting ability under different
traffic patterns makes it easier for it to pave its way into the
data center switches.

V. CONCLUSION

In this paper, we studied the effectiveness of CoDel in
meeting the requirements of large-scale data center applica-
tions. We find that CoDel accomodates packet bursts better
than existing AQMs like RED, thereby considerably improving
completion times in common data center traffic scenarios such
as incast. Moreover, it also improves completion times under
non-incast scenarios where the traffic comprises of a mix
of short and long flows. These results suggest that CoDel
can be effective in data centers. In the future, we plan to
test the performance of CoDel over a real testbed and under
heterogeneous data center applications.

REFERENCES

[1] D. Abts and B. Felderman, “A guided tour of data-center networking,”
Commun. ACM, vol. 55, no. 6, pp. 44–51, Jun. 2012.

[2] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM’04.

[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM’10.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,”Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter tcp (d2tcp),” inSIGCOMM’12.

[6] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than late: Meeting deadlines in datacenter networks,” inSIGCOMM’11.

[7] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” inIEEE/ACM Transactions on Networking, 1(4):397-
413, Aug 1993.

[8] S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queue manage-
ment,” in IEEE Network, 15(3):48-53, May 2001.

[9] K. Nichols and V. Jacobson, “Controlling queue delay,”Queue, vol. 10,
no. 5, pp. 20:20–20:34, May 2012.

[10] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail,M. S. Iqbal,
and B. Khan, “Minimizing Flow Completion Times in Data Centers,”
in INFOCOM’13.

[11] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive red: An algorithm
for increasing the robustness of red’s active queue management,” Tech.
Rep., 2001.

[12] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control
for tcp in data center networks,” inCo-Next’10.

[13] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,
G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-grained
tcp retransmissions for datacenter communication,” inSIGCOMM’09.

[14] R. Pan, B. Prabhakar, and K. Psounis, “Choke - a stateless active queue
management scheme for approximating fair bandwidth allocation,” in
INFOCOM’00.

[15] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management,” in ACM
SIGCOMM, Aug 2001.

[16] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The blue active
queue management algorithms,”IEEE/ACM Trans. Netw., vol. 10, no. 4,
pp. 513–528, Aug. 2002.

[17] L. W. Teunis Ott Lakshman, T. V. Lakshman, “Sred: Stabilized red,” pp.
1346–1355, 1999.

